

# PA10VO Series Hydraulic Piston Pump



www.yeoshehydraulic.com

Efficient Performance
Innovative Technology
Reliable Quality and
Service





- For machines with medium pressure requirements
- Sizes 10 to 140
- Nominal pressure 250 bar (3600 psi)
- Maximum pressure 315 bar (4550 psi)
- Open circuit

#### **Features**

- 1. Variable pump with axial piston rotary group in
- 2. swashplate design for hydrostatic drives in open circuit.
- 3. Flow is proportional to drive speed and displacement.
- 4. The flow can be infinitely varied by adjusting the
- 5. swashplate angle.
- 6. Stable bearing for long service life
- 7. High permissible drive speed
- 8. Favorable power-to-weight ratio compact dimensions
- 9. Low noise
- 10. Excellent suction characteristics
- 11. Electrohydraulic pressure control
- 12. Power control
- 13. Electro proportional swivel angle control
- 14. Short control times

| F | Р   | A10V      | 0       | 60      | / DRF                     | 52       | -    | R      | V        | U       | С        | 14 | ļ  | K01         |                  |    |        |
|---|-----|-----------|---------|---------|---------------------------|----------|------|--------|----------|---------|----------|----|----|-------------|------------------|----|--------|
| • | 1   | 2         | 3       | 4       | 5                         | 6        |      | 7      | 8        | 9       | 10       | 11 |    | 12          |                  | 13 | 14     |
|   | typ | е         |         |         |                           |          |      |        |          |         |          |    |    |             |                  |    |        |
| 1 | Α   | xial pist | on      |         |                           |          |      |        |          |         |          |    |    |             |                  |    | Р      |
|   | Ax  | ial pisto | n unit  |         |                           |          |      |        |          |         |          | 10 | 28 | 45          | 60 <sup>1)</sup> | 85 |        |
| 2 | S   | washpla   | ate des |         | ariable, no<br>5 bar (455 |          | pre  | ssure  | 250 ba   | ar (360 | 0 psi),  | •  | •  | •           | •                | •  | A10V   |
|   | Ор  | erating   | mode    |         |                           |          |      |        |          |         |          |    |    |             |                  |    |        |
| 3 | Р   | ump, op   | en cir  | cuit    |                           |          |      |        |          |         |          |    |    |             |                  |    | 0      |
|   | Siz | e (NG)    |         |         |                           |          |      |        |          |         |          |    |    |             |                  |    |        |
| 4 | G   | eometri   | c disp  | laceme  | ent, see ta               | ble of v | valı | ues or | n page   | 10      |          | 10 | 28 | 45          | 60               | 85 |        |
|   | Со  | ntrol de  | vice    |         |                           |          |      |        |          |         |          | 10 | 28 | 45          | 60 <sup>1)</sup> | 85 |        |
|   | Р   | ressure   | contro  | oller   |                           |          |      |        |          |         |          | T  |    | <b>1</b> 2) |                  |    | DR     |
|   | ,   | With flo  | w cont  | troller |                           |          |      |        |          |         |          |    |    |             |                  |    |        |
|   |     |           |         |         | X-T ope                   | en       |      |        |          |         |          |    |    | <b>3</b> )  |                  |    | DFR    |
| 5 |     |           |         |         |                           |          |      |        |          |         |          | -  | -  |             |                  |    | DRF    |
|   |     |           |         |         | X-T plu                   | gged     |      |        |          |         |          |    |    | <b>1</b> 2) | •                | •  | DFR1   |
|   |     |           |         |         |                           |          |      |        |          |         |          | -  | -  | _           |                  | 0  | DRS    |
|   |     |           |         |         | Electrically              | covera   | able | e (neg | ative ch | naracte | ristics) | -  | _  | _           | -                | -  | E.F.D. |

1) Series 52 units are delivered as standard with 3.66 in<sup>3</sup> (60 cm<sup>3</sup>). Higher values on request.

= = Available

<sup>2)</sup> Use data sheet 92706 for pressure flow controller DR, DFR, DFR1, DRSC A10VO 45 series 60.

□ = On request

- = Not available



| F | P A          | 10V    | 0                | 60           | 1    | DRF     | 52       | -     | R       | V    |     | U                  | С      | 14 |    | <b>K0</b> 1 |                  |    |                  |
|---|--------------|--------|------------------|--------------|------|---------|----------|-------|---------|------|-----|--------------------|--------|----|----|-------------|------------------|----|------------------|
| 1 |              | 2      | 3                | 4            |      | 5       | 6        |       | 7       | 8    |     | 9                  | 10     | 11 |    | 12          |                  | 13 | 14               |
|   |              |        |                  |              |      |         |          |       |         |      |     |                    |        | 10 | 28 | 45          | 60 <sup>1)</sup> | 85 |                  |
| - | With         |        | ssure o          |              |      |         |          |       |         |      |     |                    |        |    |    |             |                  |    |                  |
|   |              |        | lydrau           |              |      |         |          |       |         |      |     |                    |        |    |    | _           | _                | _  | DRG              |
|   |              | Е      | lectric          | ;            | ı    | Negati  | ve con   | trol  |         |      |     | =12V               |        | _  |    | -           | -                | -  | ED71             |
|   |              |        |                  |              | _    |         |          |       |         |      |     | =24V               |        | _  |    | _           | _                | _  | ED72             |
|   |              |        |                  |              |      | Positiv | e cont   | rol   |         |      | _   | =12V               |        | _  |    | _           | _                | _  | ER71             |
| - | Dawa         |        | 4                | 4 h. n. n. a |      |         | - "      |       |         |      | U   | =24V               |        | _  |    | -           |                  |    | ER72             |
| - | Powe         | r con  | trol wi          | in pre       |      |         |          | . 1   |         |      | 4.0 |                    |        |    |    |             |                  |    | 1.455            |
|   |              |        |                  |              | _;   | Start c | f contr  | Ol    |         |      |     | to 35              |        |    | -  |             |                  |    | LA5D             |
|   |              |        |                  |              |      |         |          |       |         |      |     | to 70              |        | _  | -  |             |                  |    | LA6D             |
|   |              |        |                  |              |      |         |          |       |         |      |     | to 10              |        | _  | -  | _           | _                | _  | LA7D             |
|   |              |        |                  |              |      |         |          |       |         |      |     |                    | 40 bar | _  | -  | _           |                  |    | LA8D             |
| - | Daw          |        |                  |              |      |         | 11-F     |       | 4 m a 1 |      |     |                    | 30 bar |    | -  |             |                  |    | LA9D             |
| - |              |        | control          |              |      |         | tart of  |       |         |      |     | efer to            |        |    | _  | -           |                  |    | LA7D             |
| - |              | v con  | trol, X          | - i piu      | gge  |         | tart of  |       |         |      |     | efer to<br>efer to |        |    | _  | -           |                  |    | LA8D             |
|   | elec<br>(neg | trical | ly ove           |              |      |         | tart or  | COII  | llOI    |      | Κŧ  | eiei to            | LA.D   | 0  |    | •           | 0                | 0  | LA9D             |
| 5 | Elec         | tro-h  | ydraul           | ic           |      | Pos     | itive co | ntro  | ol      | U    | =   | 12 V t             | o 24 V | -  |    | _           | _                | _  | EC4              |
|   |              | rol va |                  |              |      | Neg     | ative c  | ontr  | ol      |      |     |                    |        | -  |    | -           | _                | _  | EB4              |
|   |              |        | roport<br>charac |              |      |         |          |       |         |      |     |                    |        | 0  | _  | 0           | 0                | 0  |                  |
|   |              | Pres   | sure c           | ontrol       |      |         |          |       |         |      | U   | =12V               |        |    | _  |             |                  |    | EP1D             |
|   |              |        |                  |              |      |         |          |       |         |      | U   | =24V               |        |    | _  |             |                  |    | EP2D             |
|   |              |        | sure a           |              |      |         |          |       |         |      | U   | =12V               |        |    | -  |             |                  |    | EP1DF            |
|   |              | X-T    | openin           | g (loa       | ıd s | ensing  | 1)       |       |         |      | U   | =24V               |        |    | _  |             |                  |    | EP2DF            |
|   |              |        | sure a           |              |      |         |          |       |         |      | U   | =12V               |        |    | _  |             |                  |    | EP1DS            |
|   | _            | X-T I  | Blocka           | ge (L        | oad  | Sens    | ng)      |       |         |      | U   | =24V               |        | 0  | _  |             |                  | _  | EP2DS            |
|   |              | Elec   | trohyd           | raulic       | cor  | ntrol   |          |       |         |      | U   | =12V               |        |    | _  | _           | _                | _  | EP1ED            |
|   | _            |        |                  |              |      |         |          |       |         |      | U   | =24V               |        | 0  | _  | _           | _                | _  | EP2ED            |
|   |              |        |                  |              |      |         | ith con  | troll | er cut- | off, | U   | =12V               |        | 0  | _  |             |                  |    | EK1DF            |
|   |              | X-T    | open (           | load s       | ens  | sing)   |          |       |         |      | U   | =24V               |        | 0  | _  | 0           | 0                | 0  | EK2DF            |
|   |              |        |                  |              |      |         | ith con  | troll | er cut- | off, | U   | =12V               |        | _  | -  | 0           | 0                | 0  | EK1DS            |
|   | _            | X-T    | plugge           | d (loa       | id s | ensing  | 1)       |       |         |      | U   | =24V               |        | _  | -  | 0           | 0                | 0  | EK2DS            |
|   |              | Elect  | rohydr           | aulic o      | cont | rol wit | h contr  | oller | cut-of  | ff   | U   | =12V               |        | 0  | -  |             |                  |    | EK1ED            |
|   |              |        |                  |              |      |         |          |       |         |      | U   | =24V               |        |    | _  |             |                  |    | EK2ED            |
|   | Series       | 3      |                  |              |      |         |          |       |         |      |     |                    |        | 10 | 28 | 45          | 60 <sup>1)</sup> | 85 |                  |
| 6 |              |        | index            | 2            |      |         |          |       |         |      |     |                    |        |    |    | •           | •                | •  | 52 <sup>2)</sup> |

| = Available | = On request | <ul><li>– = Not available</li></ul> |
|-------------|--------------|-------------------------------------|

<sup>1)</sup> Series 52 units are delivered as standard with 3.66 in<sup>3</sup> (60 cm<sup>3</sup>). Higher values on request.

<sup>&</sup>lt;sup>2)</sup> Control DR, DFR,DFR1, DRG, ED and ER: delivery with size 10, 28, 45, 60 and 85% only in series 52



| Р   | A10V     | 0       | 60  | 7 | DRF | 52 | - | R | ٧ | U | С  | 14 | K01 |    |    |
|-----|----------|---------|-----|---|-----|----|---|---|---|---|----|----|-----|----|----|
| 1   | 2        | 3       | 4   |   | 5   | 6  |   | 7 | 8 | 9 | 10 | 11 | 12  | 13 | 14 |
| Dir | ection o | f rotat | ion |   |     |    |   |   |   |   |    |    |     |    |    |

#### Clockwise R Viewed on drive shaft Counter-clockwise

#### Sealing material

FKM (fluorocarbon rubber)

|   | Drive shaft        |                                                                                                                                      | 10         | 28 | 45 | 60 <sup>1)</sup> | 85 |   |
|---|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------|----|----|------------------|----|---|
|   | Splined shaft      | Standard shaft                                                                                                                       |            | •  |    |                  | •  | S |
|   | ISO 3019-1         | Similar to shaft "S" however for higher torque                                                                                       | -          |    |    |                  | •  | R |
|   |                    | Reduced diameter, limited suitability for through drive                                                                              | -          | -  |    | •                | •  | U |
| 9 |                    | Like shaft "U" but for higher torque, only conditionally suitable for mounting with through-drive. For mounting options, see page 76 | _          | •  | •  | •                | •  | W |
|   | Parallel keyed sha | aft DIN 6885 not for through-drive                                                                                                   | <b>2</b> ) | _  | -  | -                | -  | Р |
|   | Parallel keyed sha | aft ISO 3019-1 not for through-drive                                                                                                 | <b>3</b> ) |    |    |                  |    | K |
|   | Tapered keyed sh   | aft and UNF threaded bolt not for through-drive                                                                                      | -          |    |    |                  |    | С |

|    | Mounting flange  |        | 10 | 28 | 45 | 60 <sup>1)</sup> | 85 |   |
|----|------------------|--------|----|----|----|------------------|----|---|
|    | ISO 3019-2 (DIN) | 2-hole | •  | _  | _  | _                | _  | Α |
| 10 | ISO 3019-1 (SAE) | 2-hole |    |    | •  | •                | -  | С |
|    |                  | 4-hole | _  | -  | -  | <b>■</b> 3)      | _  | D |

|    | Working port                  |                                                     |                                                                              | 10 | 28 | 45 | 60 <sup>1)</sup> | 85 |    |
|----|-------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------|----|----|----|------------------|----|----|
|    | SAE flange ports according to | Fastening thread <b>metric</b> rear                 | Not for through drive                                                        | _  | •  |    |                  |    | 11 |
|    | ISO 6162 metric               | Fastening thread <b>metric</b> laterally opposite   | For through drive                                                            | _  | •  |    |                  |    | 12 |
|    |                               | Fastening thread <b>metric</b> laterally offset 90° | Not for through drive;<br>available for counter -<br>clockwise rotation only | _  | •  | •  | _                | _  | 13 |
| 11 | Threaded port <b>metric</b>   | Rear                                                | Not for through drive                                                        | 4) | •  | •  | -                | _  | 14 |
|    | SAE flange ports according to | Fastening thread <b>UNC</b> rear                    | Not for through drive                                                        | _  | •  | •  | •                | •  | 61 |
|    | ISO 6162 <b>UNC</b>           | Fastening thread <b>UNC</b> laterally opposite      | For through drive                                                            | _  | •  | •  | •                | •  | 62 |
|    | Threaded port                 | Rear                                                | Not for through drive                                                        | 5) |    |    | _                | _  | 64 |

- = Available □ = On request - = Not available
- 1) Series 52 elements are delivered in a standard size of 60 cm3. Higher values available on request.
- 2) Control DR, DFR, DFR1, DRG, ED and ER: Available in sizes 10, 28, 45, 60 and 85, only for series 52.
- <sup>3)</sup> Control DFR, DFR1: Supply specification is 85, only for series 52 C flange.
- 4) Only with mounting flange A; order item 09
- 5) Only with mounting flange C; order item 09



| Р | A10V | 0 | 60 | / DRF | 52 | - R | V | U | С  | 14 | K01 |    |    |
|---|------|---|----|-------|----|-----|---|---|----|----|-----|----|----|
| 1 | 2    | 3 | 4  | 5     | 6  | 7   | 8 | 9 | 10 | 11 | 12  | 13 | 14 |

|    | Through drive (for mounting | g options,  | see page 76)                 | 10 | 28 | 45 | 60 <sup>1)</sup> | 85 |     |
|----|-----------------------------|-------------|------------------------------|----|----|----|------------------|----|-----|
|    | Does not include through    | drive, stan | dard on models 11, 13 and 14 |    |    |    |                  |    | N00 |
|    | SAE J744 flange             | Spline sh   | aft coupling                 |    |    |    |                  |    |     |
|    | Diameter                    | Diameter    |                              |    |    |    |                  |    |     |
|    | 82-2 (A)                    | 5/8 in      | 9T 16/32DP                   |    |    |    |                  |    | K01 |
|    |                             | 3/4 in      | 11T 16/32DP                  |    | 0  | -  |                  |    | K52 |
| 12 | 101-2 (B)                   | 7/8 in      | 13T 16/32DP                  |    |    |    |                  |    | K68 |
|    |                             | 1 in        | 15T 16/32DP                  |    | 0  | •  |                  |    | K04 |
|    | 127-4 (C)                   | 1 1/4 in    | 14T 12/24DP                  | -  |    |    |                  |    | K15 |
|    |                             | 1 1/2 in    | 17T 12/24DP                  | _  | -  | -  |                  |    | K16 |
|    | 127-2 (C)                   | 1 1/4 in    | 14T 12/24DP                  | _  | -  | _  |                  |    | K07 |
|    |                             | 1 1/2 in    | 17T 12/24DP                  | -  | _  | -  | _                | п  | K24 |

|   | Connector for solenoids                                                              | 10 | 28 | 45 | 60 <sup>1)</sup> | 85 |   |
|---|--------------------------------------------------------------------------------------|----|----|----|------------------|----|---|
| 1 | Without connector (without solenoid, only for hydraulic controls, without signs)     | •  | •  | •  | •                | •  |   |
| ' | DEUTSCH – molded connector, 2-pin – without suppressor diode (for electric controls) | -  | •  | •  | •                | •  | Р |

|    | Swivel angle sensor               |             |                | 10 | 28 | 45 | 60 <sup>1)</sup> | 85 |   |
|----|-----------------------------------|-------------|----------------|----|----|----|------------------|----|---|
|    | Without swivel angle sensor (wit  | hout code)  |                | •  | •  | •  | -                | •  |   |
| 14 | With electric swivel angle sensor | Ratiometric | Power supply U | _  |    | •  | •                | •  | Н |
|    | PAL (as per data sheet 95161) 4)  | SENT/SENT   | = 5V DC        | _  |    |    |                  |    | Р |

#### **Notice**

- Observe the general project planning notes on page 84 and the project planning notes regarding each control device.
- In addition to the type code, please specify the relevant technical data.

■ = Available □ = On request - = Not available

- Series 52 elements are delivered in a standard size of 60 cm3. Higher values available on request.
- <sup>2)</sup> Control DR, DFR, DFR1, DRG, ED and ER: Available in sizes 10, 28, 45, 60 and 85, only for series 52.
- <sup>3)</sup> Control DFR, DFR1: Supply specification is 85, only for series 52 C flange.
- 4) Also see page 79 for further details.



| ~ |  |
|---|--|
|   |  |
|   |  |

|   | 1   |      | 2    |     | 3            |   |
|---|-----|------|------|-----|--------------|---|
|   | typ | е    |      |     |              |   |
| 1 | Α   | xia  | Ιp   | ist | on           |   |
|   | Ax  | ial  | pis  | sto | n ur         | 1 |
| 2 |     |      |      |     | te d<br>), m |   |
|   | Ор  | era  | atir | ng  | mod          | t |
| 3 | Р   | um   | ıp,  | ор  | en d         | С |
|   | Siz | ze i | (N   | G)  |              |   |
| 4 | G   | ео   | me   | tri | c di         | s |
|   | Со  | ntr  | ol   | de  | vice         |   |
|   | Pr  | es   | sur  | e c | cont         | r |
|   | ١   | ∕Vit | h f  | lov | / co         | r |
|   |     |      |      |     |              |   |

| P A          | 10V O 60                                                                                                     | ) / D   | RF      | 53 -       | R       | V                     | U    | C  | ;  | 14 | ,          | <b>K</b> 01 |     |       |               |
|--------------|--------------------------------------------------------------------------------------------------------------|---------|---------|------------|---------|-----------------------|------|----|----|----|------------|-------------|-----|-------|---------------|
| 1            | 2 3 4                                                                                                        |         | 5       | 6          | 7       | 8                     | 9    | 1  | 0  | 11 |            | 12          |     | 13    | 14            |
| type         |                                                                                                              |         |         |            |         |                       |      |    |    |    |            |             |     |       |               |
| 1 Axial      | piston                                                                                                       |         |         |            |         |                       |      |    |    |    |            |             |     |       | Р             |
|              | oiston unit                                                                                                  |         |         |            |         |                       |      | 18 | 28 | 45 | 63         | 72          | 85  | 100   |               |
|              | shplate design,<br>O psi), maximu                                                                            |         |         |            |         |                       | r    | •  | •  | •  | •          | •           | •   | •     | A10V          |
| Opera        | ting mode                                                                                                    |         |         |            |         |                       |      |    |    |    |            |             |     |       |               |
| 3 Pum        | o, open circuit                                                                                              |         |         |            |         |                       |      |    |    |    |            |             |     |       | 0             |
| Size (       | NG)                                                                                                          |         |         |            |         |                       |      |    |    |    |            |             |     |       |               |
|              | netric displace                                                                                              | ment, s | ee tab  | le of valu | ues o   | n page                | 7    | 18 | 28 | 45 | 63         | 72          | 85  | 100   |               |
| Contra       | ol device                                                                                                    |         |         |            |         |                       |      | 40 | 00 |    | 00         | 70          | 0.5 | 400   |               |
|              | ure controller                                                                                               |         |         |            |         |                       |      | 18 | 28 | 45 | 63         | 72          | 85  | 100   | DR            |
|              | flow controlle                                                                                               | r       |         |            |         |                       |      | _  | _  |    | -          |             | _   |       | DIX           |
| VVICI        | i now controlle                                                                                              |         | Γoper   | า          |         |                       |      |    |    | 2) |            |             |     |       | DFR           |
|              |                                                                                                              | Λ       | i opei  |            |         |                       |      | i  | ÷  | 2) | ÷          |             |     |       | DRF           |
|              |                                                                                                              | X-      | Γ plug  | ged        |         |                       |      | _  | _  | _  | _          | -           | _   | _     | DFR1          |
|              |                                                                                                              |         | 1 3     | 5          |         |                       |      |    | •  | 2) | •          |             | -   | -     | DRS           |
|              |                                                                                                              | Ele     | ectrica | ılly cover | able    |                       |      |    |    |    |            |             |     |       | E.F.D.        |
|              |                                                                                                              | (ne     | egative | e charac   | teristi | cs)                   |      | _  |    | _  |            |             | _   | _     | E.F.D.        |
| With         | pressure cut-                                                                                                | off     |         |            |         |                       |      |    |    |    |            |             |     |       |               |
|              | Hydraulic                                                                                                    |         |         |            |         |                       |      | •  | •  | •  | •          | •           | •   | •     | DRG           |
|              | Electric                                                                                                     | Ne      | gative  | control    | U       | =12V                  |      | •  | •  | •  | •          | -           | •   | •     | ED71          |
|              |                                                                                                              |         |         |            | U       | =24V                  |      | •  | •  | •  | •          | •           | •   | •     | ED72          |
|              |                                                                                                              | Р       | ositive | control    |         | =12V                  |      | •  | •  | •  | •          | •           | •   | •     | ER71          |
| 5            |                                                                                                              |         |         |            |         | =24V                  |      | _  | •  | -  | 1)         | -           | _   | -     | ER72          |
|              | tro-hydraulic<br>rol valve                                                                                   | Positiv |         |            | U =     | 12 V to               | 24 V | _  | -  | -  | <b>1</b> ) |             | _   | -     | EC4           |
|              |                                                                                                              | Negat   |         |            |         |                       |      | _  | _  | _  | <b>1</b> ) | -           | _   | _     | EB4           |
| Powe         | r control with p                                                                                             | ressure |         |            |         |                       |      |    |    |    |            |             |     |       |               |
|              |                                                                                                              |         | Start   | of contr   |         | to 35 l               |      |    |    | _  | _          |             |     |       | LA5D          |
|              |                                                                                                              |         |         |            |         | 6 to 70 l             |      |    | -  | _  | _          |             | -   |       | LA6D          |
|              |                                                                                                              |         |         |            |         | to 105                |      |    |    | 0  | -          |             |     |       | LA7D          |
|              |                                                                                                              |         |         |            |         | )6 to 14              |      |    |    | -  |            |             | -   |       | LA8D          |
| rem          | otely operated                                                                                               |         | Start   | of contro  |         | 11 to 23<br>efer to L |      |    |    | -  |            |             | -   |       | LA9D<br>LA.DG |
|              | control, X-T pl                                                                                              | uaaed   |         | of contro  |         | efer to L             |      |    | ÷  | -  | -          | Ė           |     | i     | LA.DG         |
|              |                                                                                                              | -9904   |         |            |         |                       |      |    | _  |    | _          |             | _   | בת.טט |               |
| elec<br>(neg | Flow control, Start of control Refer to LA.I electrically overridable (negative characteristic), X-T plugged |         |         |            |         |                       |      |    |    |    | •          | •           | •   | •     | LA.DC         |

| = Available | = On request | <ul><li>– = Not available</li></ul> | = Not for new projects |
|-------------|--------------|-------------------------------------|------------------------|
|-------------|--------------|-------------------------------------|------------------------|

<sup>1)</sup> Only available with mounting flange C (order item 09).

<sup>&</sup>lt;sup>2)</sup> Use data sheet 92706 for pressure flow controller DR, DRF, DRS, DRSC A10VO 45 series 60



EK1DS

EK2DS

EK1ED

EK2ED



|   |                                               |        | 18 | 28 | 45 | 63 | 72 | 85 | 100 |       |
|---|-----------------------------------------------|--------|----|----|----|----|----|----|-----|-------|
| E | lectro proportional control (Positive control |        |    |    |    |    |    |    |     |       |
|   | With pressure control                         | U =12V | •  | •  |    | •  |    |    | •   | EP1D  |
|   |                                               | U =24V | •  | •  |    | •  | •  |    | •   | EP2D  |
|   | Pressure and flow control,                    | U =12V |    |    |    | -  |    |    |     | EP1DF |
|   | (load sensing) X-T open                       | U =24V |    |    |    | -  |    |    | 0   | EP2DF |
|   | Pressure and flow control,                    | U =12V |    |    |    | -  |    |    |     | EP1DS |
|   | (load sensing) X-T plugged                    | U =24V |    |    |    | -  |    |    | 0   | EP2DS |
| 5 | Electrohydraulic control                      | U =12V |    |    |    | -  |    |    | 0   | EP1ED |
|   |                                               | U =24V |    |    |    | _  |    |    |     | EP2ED |
|   | Pressure and flow control with controller     | U =12V | •  | •  |    |    |    | •  | •   | EK1DF |
|   | cut-off (load sensing) X-T open               | U =24V |    | •  | 0  | •  |    | -  | •   | EK2DF |

|   | Series            | 18 | 28 | 45 | 63 | 72 | 85 | 100 |    |
|---|-------------------|----|----|----|----|----|----|-----|----|
| 6 | Series 5, index 3 |    |    |    |    |    |    |     | 53 |

U =12V

U = 24V

U =12V

U =24V

#### Direction of rotation

Pressure and flow control with controller

cut-off (load sensing) X-T plugged

Electrohydraulic pressure control

with controller cut-off

| 7 | Viewed on drive shaft | Clockwise           | R |
|---|-----------------------|---------------------|---|
|   | viewed on drive shall | Counter-clockwise 🥥 | L |

#### Sealing material

8 FKM (fluorocarbon rubber)

|   | Drive shaft            |                                                          | 18 | 28 | 45 | 63 | 72 | 85 | 100 |   |
|---|------------------------|----------------------------------------------------------|----|----|----|----|----|----|-----|---|
|   | Splined shaft          | standard shaft                                           | •  | •  | •  | •  | •  | •  | •   | S |
|   | ANSI B92.1 a           | similar to shaft ,<br>S" however for higher input torque |    | •  |    | •  | •  | •  | •   | R |
| ( | 9                      | reduced diameter, not for through drive                  | •  |    |    | •  |    |    |     | U |
|   |                        | similar to shaft "U",<br>however for higher torque       | _  | •  | •  | •  | •  | •  | •   | W |
|   | Parallel keyed shaft [ | IN68885 not for through-drive                            |    |    |    |    |    |    |     | K |

|    | Mounting flange  |        | 18 | 28 | 45 | 63 | 72 | 85 | 100 |   |
|----|------------------|--------|----|----|----|----|----|----|-----|---|
| 10 | ISO 3019-1 (SAE) | 2-hole | •  |    | •  | •  |    |    | •   | С |
| 10 |                  | 4-hole | -  | _  | _  |    |    |    |     | D |

■ = Available □ = On request - = Not available



| F | P A10V O                              | 60 /                   | DRF                                | 53    | -                                     | R            | V                          | U               | C  | ;  | 14 |     | K01 |    |     |     |
|---|---------------------------------------|------------------------|------------------------------------|-------|---------------------------------------|--------------|----------------------------|-----------------|----|----|----|-----|-----|----|-----|-----|
| , | 1 2 3                                 | 4                      | 5                                  | 6     |                                       | 7            | 8                          | 9               | 1  | 0  | 11 |     | 12  |    | 13  | 14  |
|   | Working port                          |                        |                                    |       |                                       |              |                            |                 | 18 | 28 | 45 | 63  | 72  | 85 | 100 |     |
|   | SAE flange ports according to         | Fasten<br><b>metri</b> | ing thre                           | ead   | Not                                   | for th       | rough                      | drive           | •  | •  | •  | •   |     | •  |     | 11  |
|   | ISO 6162 metric                       | i aston                | ing thre<br>c latera<br>ite        |       | For                                   | throu        | gh driv                    | е               | •  | •  | •  | •   |     | •  | -   | 12  |
| 1 |                                       |                        | ing thre<br><b>c</b> latera<br>90° |       | ava                                   | ilable       | rough of for coue rotation | ınter -         | _  | -  |    | _   | _   | _  | _   | 13  |
|   | SAE flange ports according to         | Fasten<br>UNC I        | ing thre                           | ead   | Not                                   | for th       | rough                      | drive           | •  | •  | •  | •   | •   | •  | •   | 61  |
|   | ISO 6162 UNC                          |                        | ing thre<br>aterally<br>ite        |       | For                                   | throu        | gh driv                    | е               | •  | •  | •  | •   | •   | •  | •   | 62  |
|   | Through drive (for                    | r mountir              | na optio                           | ns. s | see p                                 | age 7        | <b>'</b> 6)                |                 | 18 | 28 | 45 | 63  | 72  | 85 | 100 |     |
|   | Does not include standard on mode     | through                | drive,                             |       | , , , , , , , , , , , , , , , , , , , | <del>-</del> |                            |                 | •  | _  |    |     | •   | •  | •   | N00 |
|   | SAE J744 flange                       | !                      | Hub f                              | for s | olined                                | d shat       | t <sup>1)</sup>            |                 |    |    |    |     |     |    |     |     |
|   | Diameter                              |                        | Diam                               | eter  |                                       |              |                            |                 |    |    |    |     |     |    |     |     |
|   | 82-2 (A)                              |                        | 5/8 ir                             | 1     | 9T ′                                  | 16/32        | DP                         |                 | •  | •  |    | •   |     | •  | •   | K01 |
| 2 |                                       |                        | 3/4 ir                             | 1     | 11T                                   | 16/32        | DP                         |                 | •  | •  |    |     |     | •  |     | K52 |
| _ | 101-2 (B)                             |                        | 7/8 ir                             | 1     | 13T                                   | 16/32        | DP.                        |                 | _  | •  | •  | •   | •   | •  | •   | K68 |
|   |                                       |                        | 1 in                               |       | 15T                                   | 16/32        | 2DP                        |                 | -  | _  | •  | •   | •   | •  | •   | K04 |
|   | 127-4 (C)                             |                        | 1 1/4                              | in    | 14T                                   | 12/24        | DP                         |                 | _  | _  | _  | •   | •   | •  | •   | K15 |
|   |                                       |                        | 1 1/2                              | in    | 17T                                   | 12/24        | DP                         |                 | _  | _  | -  | -   | -   | •  | •   | K16 |
|   | 127-2 (C)                             |                        | 1 1/4                              | in    | 14T                                   | 12/24        | DP                         |                 | -  | -  | -  | _   | _   | •  | •   | K07 |
|   |                                       |                        | 1 1/2                              | in    | 17T                                   | 12/24        | DP                         |                 | _  | _  | _  | _   | _   | •  |     | K24 |
|   | Connector for sole                    | enoids                 |                                    |       |                                       |              |                            |                 | 18 | 28 | 45 | 63  | 72  | 85 | 100 |     |
|   | Without connecte<br>(without solenoic | or                     | r hydra                            | ulic  | contr                                 | ols, w       | rithout                    | signs)          | •  | •  | •  |     | •   |    | •   |     |
| 3 | DEUTSCH - mol<br>- without suppre     |                        |                                    |       |                                       | ontrol       | s)                         |                 | •  | •  | •  | •   | •   | •  | •   | Р   |
|   | Swivel angle sens                     | or                     |                                    |       |                                       |              |                            |                 | 18 | 28 | 45 | 63  | 72  | 85 | 100 |     |
|   | Without swivel ar                     |                        | sor (wit                           | hout  | code                                  | )            |                            |                 | •  | •  |    |     |     |    |     |     |
| 4 | With electric swive angle sensor PAL  |                        | •                                  | tiome |                                       |              | wer sur                    | oply U<br>5V DC | -  | -  | -  | 2)  |     | _  | -   | Н   |
|   | angle sensor FAL                      | 05404\3)               | SE                                 | NT/S  | ENT                                   |              |                            | טע עט           |    |    |    | _2) | _2) |    |     |     |

SENT/SENT

#### Notice

Note the project planning notes on page 84.

(as per data sheet 95161) 3)

- In addition to the type code, please specify the relevant technical data when placing your order.
- = = Available □ = On request - = Not available
- 1) In accordance with ANSI B92.1a
- 2) Only available with mounting flange C (order item 09)
- 3) Also see page 79 for further details



#### Hydraulic fluids

When using environmentally friendly hydraulic fluids, the relevant technical data and seal limitations must be observed. Please contact us for details. When ordering, please specify the hydraulic fluid to be used.

#### Operating Viscosity Range

For optimal efficiency and service life, we recommend selecting the operating viscosity (at operating temperature) within the following optimal range.

#### vopt = Optimal operating viscosity : 16 to 36 mm²/s

Please refer to the tank temperature (open circuit).

#### Viscosity Limits

Under critical operating conditions, the following values apply:

 $v_{min} = 10 \text{ mm}^2/\text{s}$ 

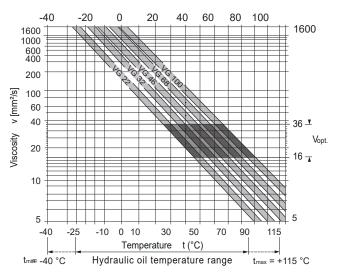
- Permissible for short periods (t ≤ 1 min)
- Maximum permissible case drain temperature: 115 °C

Please note that certain areas (e.g., the bearing area)

must also not exceed the maximum case drain fluid temperature of 115  $^{\circ}$ C.

The oil temperature in the bearing area is approximately 5K higher than the average case drain fluid temperature.

 $v_{max} = 1600 \text{ mm}^2/\text{s}$ 


- Permissible for short periods (t ≤ 1 min)
- During cold start

 $(p \le 30 \text{ bar}, n \le 1000 \text{ rpm}, \text{ tmin -25 °C})$ 

Depending on the installation, special measures must be taken when operating between -40  $^{\circ}C$  and -25  $^{\circ}C.$ 

For more information on low-temperature operation, please contact YEOSHE.

#### Selection diagram



#### Notes on Selecting Hydraulic Fluid

To select the proper hydraulic fluid, it is necessary to determine the operating temperature based on the ambient temperature. In an open circuit, this refers to the tank temperature.

Hydraulic fluid should be selected so that it operates within

the optimal viscosity range (vopt) at the expected operating temperature. Please refer to the shaded area in the selection chart. We recommend choosing a fluid with a higher viscosity grade appropriate for the given conditions.

#### Example:

At an ambient temperature of X  $^{\circ}\text{C},$  the operating temperature in the tank is 60  $^{\circ}\text{C}.$ 

Within the optimal viscosity range (vopt; shaded area), this corresponds to viscosity grades VG 46 to VG 68; in this case, VG 68 should be selected.

#### Hydraulic Fluid Filtration

The finer the filter element, the higher the fluid cleanliness—and the longer the service life of the axial piston unit.

To ensure the reliable performance of the axial piston unit, it is essential to perform a comprehensive analysis of the hydraulic fluid to determine the level of solid particle contamination. This assessment should confirm whether the cleanliness meets the ISO 4406 standard

A minimum cleanliness level of ISO 4406 class 20/18/15 is required.

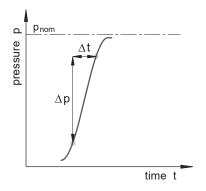
When operating hydraulic fluid at elevated temperatures (from 90 °C up to a maximum of 115 °C), a higher cleanliness level of at least ISO 4406 class 19/17/14 is required.

If the specified cleanliness levels cannot be achieved, please contact us.

#### Important Note

The case drain temperature is influenced by pressure and input speed and is always higher than the tank temperature. However, the temperature at any point on the component must not exceed 115  $^{\circ}$ C.

When determining bearing viscosity, the specified temperature difference on the left side must be taken into account.


If the above conditions cannot be met due to extreme operat-

ing parameters, please consult us.



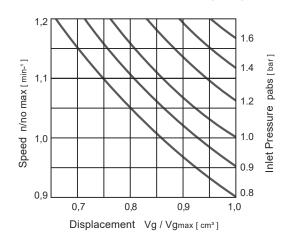
#### **Operating Pressure Specifications**

- Pressure at service line port B
- Nominal pressure pnom -250 bar
- Maximum pressure pmax -- 315 bar Single operation duration — 2.5 ms \_\_\_\_\_ 300 hours Total operating time —
- Minimum pressure 10 bar (absolute pressure)<sup>1)</sup> (high-pressure side)
- ----- 16,000 bar/s ■ Pressure change rate RAmax —



#### Suction port S (inlet) pressure

Minimum pressure Ps min — 0.8 bar (absolute pressure) Maximum pressure Ps max — 5 bar <sup>1)</sup>


#### Case Drain Pressure

The maximum allowable case drain pressure (at ports L, L1) must not exceed 0.5 bar above the inlet pressure at port S, and in any case not more than 2 bar.

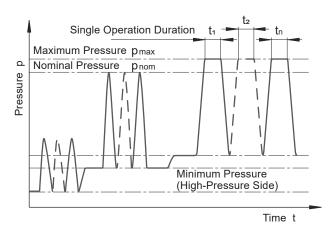
2 bar PL max abs -

#### Maximum Permissible Speed (Speed Limitation)

An increase in the inlet pressure pabs at suction port S is required, or operation must be within  $Vg \le Vg_{max}$ .



#### **Definition**


■ Nominal pressure Pnom

The nominal pressure corresponds to the maximum design pressure.

■ Maximum pressure pmax

The maximum pressure corresponds to the operating pressure within the single operating period. The total of the single operating periods must not exceed the total operating

- Minimum pressure (high-pressure side) Minimum pressure on the high pressure side (B) that is required in order to prevent damage to the axial piston unit.
- Minimum pressure (inlet) open circuit Minimum pressure at suction port S (inlet) that is required to prevent damage to the axial piston unit. The minimum pressure depends on the speed and displacement of the axial piston unit.
- Rate of pressure change RA Maximum permissible pressure build-up and pressure reduc-tion speed with a pressure change over the entire pressure range.



Total Operating Time = t1 + t2 + ... + tn



Table of values (theoretical values, without efficiencies and tolerances: values rounded)

| Size                              |                                                                | N                  | G                    | 10           | 18             | 28             | 45                 | 60             | 63             | 72             | 85               | 100              |
|-----------------------------------|----------------------------------------------------------------|--------------------|----------------------|--------------|----------------|----------------|--------------------|----------------|----------------|----------------|------------------|------------------|
| Geometrical dis<br>per revolution | placement                                                      | V <sub>g max</sub> | in³<br>cm³           | 0.64<br>10   | 1.10<br>18     | 1.75<br>28     | 2.75<br>45         | 3.66<br>60     | 3.84<br>63     | 4.39<br>72     | 5.18<br>85       | 6.10<br>100      |
| Maximum<br>rotational             | at Vg max                                                      | Nnom               | rpm                  | 3600         | 3300           | 3000           | 2600 <sup>4)</sup> | 2700           | 2600           | 2600           | 2500             | 2300             |
| speed 1)                          | at Vg < Vg max 2)                                              | nmax perm          | rpm                  | 4320         | 3960           | 3600           | 3120               | 3140           | 3140           | 3140           | 3000             | 2500             |
| Flow                              | at $n_{\text{nom}}$ and $V_{\text{g}}_{\text{max}}$            | qvE max            | l/min                | 37           | 59             | 84             | 117                | 162            | 163            | 187            | 212              | 230              |
|                                   | at ne =1500 rpm                                                | qvE max            | l/min                | 15           | 27             | 42             | 68                 | 90             | 95             | 108            | 128              | 150              |
| Power                             | at $n_{nom}$ , $V_{g max}$ and $\Delta p$ = 250 bar (3600 psi) | P <sub>max</sub>   | kW                   | 16           | 25             | 35             | 49                 | 65             | 68             | 77             | 89               | 96               |
|                                   | at ne =1500 rpm                                                | PE max             | kW                   | 7            | 11             | 18             | 28                 | 37             | 39             | 45             | 53               | 62               |
| Torque                            | at $V_{g max}$ and $\Delta p = 250$ bar (3600 psi)             | Tmax               | Nm                   | 42           | 71             | 111            | 179                | 238            | 250            | 286            | 338              | 398              |
|                                   | at $V_{g max}$ and $\Delta p = 100$ bar (1450 psi)             | Т                  | Nm                   | 17           | 29             | 45             | 72                 | 95             | 100            | 114            | 135              | 159              |
| Rotary stiffness of drive shaft   | S                                                              | С                  | lb-ft/rad<br>kNm/rad | 6760<br>9.2  | 8082<br>11.0   | 16400<br>22.3  | 27560<br>37.5      | 48100<br>65.5  | 48100<br>65.5  | 48100<br>65.5  | 105100<br>143.0  | 105100<br>143.0  |
|                                   | R                                                              | С                  | lb-ft/rad<br>kNm/rad | _<br>_       | 14800<br>10870 | 26300<br>19400 | 41000<br>30240     | 69400<br>51200 | 69400<br>51200 | 69400<br>51200 | 152900<br>112773 | 152900<br>112773 |
|                                   | U                                                              | С                  | lb-ft/rad<br>kNm/rad | 6.8<br>5020  | 8.0<br>5870    | 16.7<br>12317  | 30.0<br>22130      | 49.2<br>36290  | 49.2<br>36290  | 49.2<br>36290  | 102.9<br>75900   | 102.9<br>75900   |
|                                   | W                                                              | С                  | lb-ft/rad<br>kNm/rad | _            | _              | 19.9<br>14678  | 34.4<br>25270      | 54.0<br>39830  | 54.0<br>39830  | 117.9<br>39830 | 117.9<br>86960   | 117.9<br>86960   |
|                                   | Р                                                              | С                  | lb-ft/rad<br>kNm/rad | 10.7<br>7892 | _              | _<br>_         | _<br>_             | _<br>_         | _              |                | _                |                  |
|                                   | K                                                              | С                  | lb-ft/rad<br>kNm/rad | 10.8<br>7965 | 13.3<br>9810   | 26.8<br>19770  | 43.9<br>32380      | 73.9<br>54506  | 73.9<br>54506  | 73.9<br>54506  | 163.4<br>120518  | 163.4<br>120518  |
| Moment of inerti                  | a of the                                                       | J <sub>TW</sub>    | kgm²                 | 0.0006       | 0.0009         | 0.0017         | 0.003              | 0.0056         | 0.0056         | 0.0056         | 0.012            | 0.012            |
| Maximum angul                     | ar acceleration <sup>3)</sup>                                  | α                  | rad/s²               | 8000         | 6800           | 5500           | 4000               | 3300           | 3300           | 3300           | 2700             | 2700             |
| Case volume                       |                                                                | V                  | L                    | 0.2          | 0.25           | 0.3            | 0.5                | 0.8            | 0.8            | 0.8            | 1                | 1                |
| Weight (without approx.           | t through drive)                                               | m                  | kg                   | 8            | 11.5           | 15             | 18                 | 22             | 22             | 22             | 36               | 36               |
| Weight with thro                  | ough drive (approx.                                            | m                  | kg                   | _            | 13             | 18             | 24                 | 28             | 28             | 28             | 45               | 45               |

- 1) The values are applicable:
  - at absolute pressure pabs = 1 bar (15 psi) at suction port S
  - for the optimum viscosity range from Vopt = 36 to 16 mm²/s (cSt)
  - with hydraulic fluid based on mineral oils
- 2) See diagram on page 11 at speed increase up to  $\ensuremath{n_{\text{max}}}\xspace$  adm.
- 3) The data are valid for values between the minimum required and maximum permissible rotational speed. Valid for external excitation (e.g. diesel engine 2 to 8 times the rotary frequency; cardan shaft 2 times the rotary frequency). The limit value is only valid for a single pump. The load capacity of the connection parts must be considered.
- 4) Higher rotational speeds on request.

#### **Notice**

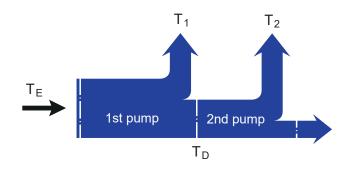
Exceeding the maximum permissible values or falling below the minimum permissible values may result in loss of function, shortened service life or complete destruction of the axial piston unit. We recommend checking the loads by testing or calculation/simulation and comparing with the permissible values.

#### Specifications calculation

Flow Rate  $qV = \frac{V_g \cdot n \cdot \eta \, V}{1000} \qquad [I/min] \qquad V_g = \text{Displacement per revolution (cm}^3)$   $\Delta p = \text{Pressure difference (bar)}$ Torque  $T = \frac{V_g \cdot \Delta p}{20 \cdot p \cdot \text{hmh}} \qquad [Nm] \qquad n = \text{Speed (rpm)}$   $\eta \, V = \text{Volumetric efficiency}$   $\eta \, mh = \text{Mechanical - hydraulic efficiency}$   $\eta \, t = \text{Total efficiency } (\eta \in \eta \vee \eta \text{mh})$ 



#### Permissible radial and axial forces on the drive shaft


| Size                        | NG                 |     | 10    | 18    | 28     | 45     | 60/63  | 72     | 85     | 100    |
|-----------------------------|--------------------|-----|-------|-------|--------|--------|--------|--------|--------|--------|
| Radial force maximum at a/2 | I                  |     |       |       |        |        |        |        |        |        |
| ¥                           | F <sub>q max</sub> | lbf | 56    | 78    | 270    | 337    | 382    | 337    | 450    | 450    |
| a/2 a/2                     | , d max            | (N) | (250) | (350) | (1200) | (1500) | (1700) | (1500) | (2000) | (2000) |
| Axial force maximum         |                    |     |       |       |        |        |        |        |        |        |
| Fax                         | + Fax max          | lbf | 90    | 157   | 225    | 337    | 450    | 337    | 675    | 675    |
|                             | - ax max           | (N) | (400) | (700) | (1000) | (1500) | (2000) | (1500) | (3000) | (3000) |
|                             |                    |     |       |       |        |        |        |        |        |        |

#### Permissible input and through-drive torques

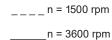
| Size                                                         | NG                 |               | 10         | 18         | 28          | 45           | 60/63        | 72           | 85            | 100           |
|--------------------------------------------------------------|--------------------|---------------|------------|------------|-------------|--------------|--------------|--------------|---------------|---------------|
| Torque at $V_{g max}$ and $\Delta p = 250$ bar (3600 psi) 1) | T <sub>max</sub>   | lb-ft<br>(Nm) | 31<br>(42) | 52<br>(71) | 82<br>(111) | 132<br>(179) | 184<br>(250) | 211<br>(321) | 247<br>(338)  | 293<br>(398)  |
| Max. input torque on drive s                                 | haft <sup>2)</sup> |               |            |            |             |              |              |              |               |               |
| S                                                            | TE max<br>Ø        | in<br>(Nm)    | 3/4<br>126 | 3/4<br>124 | 7/8<br>198  | 1<br>319     | 1 1/4<br>630 | 1 1/4<br>630 | 1 1/2<br>1157 | 1 1/2<br>1157 |
| R                                                            | TE max<br>Ø        | in<br>(Nm)    | _<br>_     | 3/4<br>160 | 7/8<br>250  | 1<br>400     | 1 1/4<br>650 | 1 1/4<br>650 | 1 1/2<br>1215 | 1 1/2<br>1215 |
| U                                                            | TE max<br>Ø        | in<br>(Nm)    | 5/8<br>60  | 5/8<br>59  | 3/4<br>105  | 7/8<br>188   | 1<br>306     | 1 1/4<br>306 | 1 1/4<br>628  | 1 1/4<br>628  |
| W                                                            | TE max<br>Ø        | in<br>(Nm)    | _<br>_     | _<br>_     | 3/4<br>140  | 7/8<br>220   | 1<br>396     | 1<br>383     | 1 1/4<br>650  | 1 1/4<br>650  |
| P                                                            | TE max<br>Ø        | in<br>(Nm)    | 0.71<br>90 | _<br>_     | _<br>_      | _<br>_       | _<br>_       | _<br>_       | _<br>_        | _<br>_        |
| Maximum through-drive tord                                   | que                |               |            |            |             |              |              |              |               |               |
| S                                                            | T <sub>D</sub> max | Nm            | _          | 108        | 160         | 319          | 484          | 484          | 698           | 698           |
| R                                                            | T <sub>D</sub> max | Nm            | _          | 120        | 176         | 365          | 484          | 484          | 698           | _             |

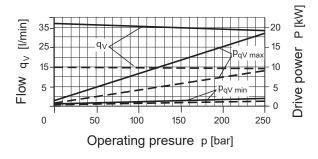
<sup>&</sup>lt;sup>1)</sup> Efficiency not considered.

#### Distribution of torques

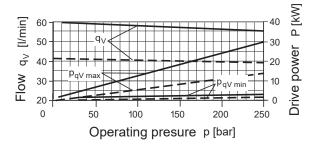


<sup>&</sup>lt;sup>2)</sup> For drive shafts with no radial force.





#### Drive power and flow

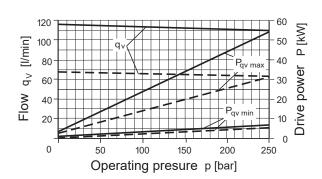
Operating material:


Hydraulic fluid ISO VG 46 DIN 51519, = 50 "C

#### Size 10






#### Size 18



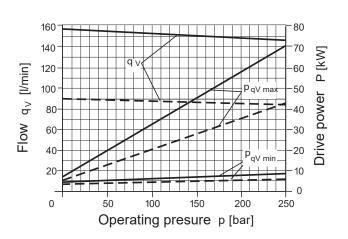
#### Size 28



#### Size 45

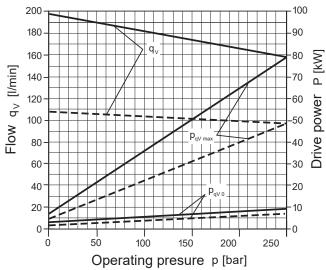





#### Drive power and flow

Operating material:

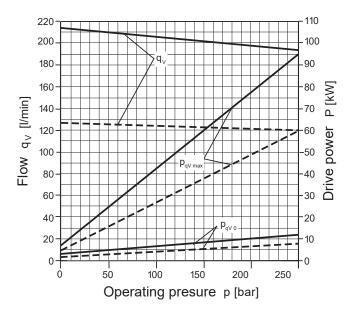
Hydraulic fluid ISO VG 46 DIN 51519, = 50 "C


#### Size 60/63

\_\_\_ n = 1500 rpm n = 2600 rpm



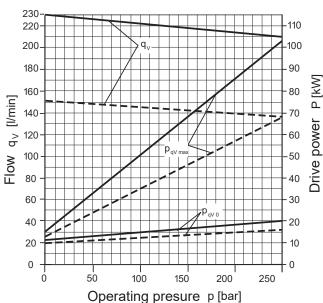
#### Size 72


n = 1500 rpm n = 2500 rpm



#### Size 85

\_ \_ \_ \_ n = 1500 rpm


n = 2500 rpm

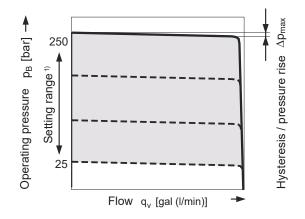


#### **Size 100**

\_ n = 1500 rpm

n = 2300 rpm

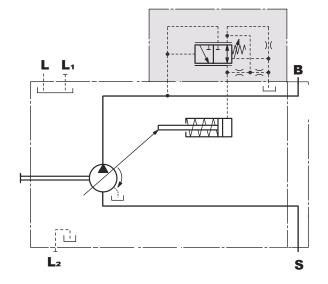



### **DR - Pressure controller**



The pressure control limits the maximum pressure at the pump output within the pump control range. The variable pump only supplies as much hydraulic fluid as is required by the consu-mers. If the operating pressure exceeds the target pressure set at the pressure valve, the pump will regulate towards a smaller displacement. The pressure can be set steplessly at the control valve.

#### Static characteristic


(at  $n_1 = 1500 \text{ rpm}$ ;  $t_{fluid} = 120^{\circ}\text{F} (50^{\circ}\text{C})$ )



1) In order to prevent damage to the pump and the system, this setting range is the permissible setting range and it is not allowed to exceeded.

The range of possible settings at the valve are greater.

#### Circuit diagram



|            | Port for                          |
|------------|-----------------------------------|
| В          | Service line                      |
| S          | Suction line                      |
| L \ L1 \ 2 | Case drain fluid (L1 、 2 plugged) |

#### Controller data

Hysteresis and repeatability ∆p \_\_\_\_\_ maximum 45 psi (3 bar)

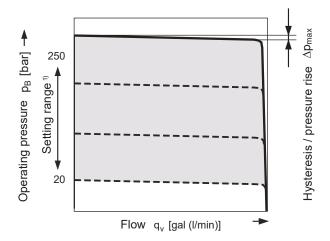
#### Pressure rise, maximum

|    |       |     | 18  |     |     | 63  |     |      |      |
|----|-------|-----|-----|-----|-----|-----|-----|------|------|
| ∆р | bar   | 90  | 90  | 90  | 90  | 115 | 115 | 175  | 200  |
|    | (bar) | (6) | (6) | (6) | (6) | (8) | (8) | (12) | (14) |

Control fluid consumption \_\_\_\_\_ max. approx. 0.8 gpm (3 l/min)

### **DRG – Pressure control remotely operated**



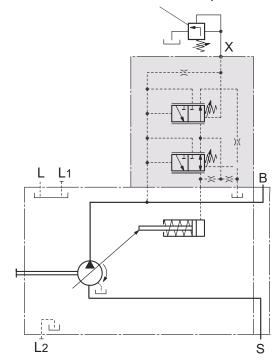

The DRG control valve overrides the function of the DR pressure controller.

A pressure relief valve can be externally piped toport X for remote setting of pressure below the setting of the DR control valve spool. This relief valve is not included in the delivery contents of the pump.

The differential pressure at the control valve is set as standard to 290 psi (20 bar). The control fluid volume at port X is approx. 0.4 gpm (1.5 l/min). If another setting is required (range from 145 to 320 psi (10 to 22 bar)) please state this in clear text.

#### Static characteristic

(at  $n_1 = 1500 \text{ rpm}$ ;  $t_{fluid} = 120^{\circ}\text{F}$  (50 °C))




<sup>1)</sup> In order to prevent damage to the pump and the system, this setting range is the permissible setting range and it is not allowed to be exceeded.

The range of possible settings at the valve is higher.

#### Circuit diagram

Not included in the delivery contents



|            | 油口用途                              |
|------------|-----------------------------------|
| В          | Service line                      |
| S          | Suction line                      |
| L \ L1 \ 2 | Case drain fluid (L1 \ 2 plugged) |
| X          | Pilot pressure                    |

#### Controller data

Hysteresis and repeatability ∆p maximum 45 psi (3 bar)

#### Pressure rise, maximum

| NG     |     |     |     |     | 63  |     |      |      |
|--------|-----|-----|-----|-----|-----|-----|------|------|
| ∆p bar | 87  | 87  | 87  | 90  | 115 | 115 | 175  | 200  |
| (bar)  | (6) | (6) | (6) | (6) | (8) | (8) | (12) | (14) |

Control fluid consumption \_\_\_\_

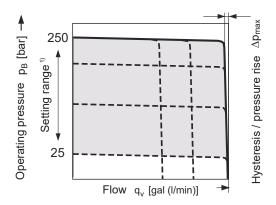
\_\_ max. approx. 1.2 gpm (4.5 l/min)

### DRF (DFR) DRS (DFR1) - Pressure and flow control

In addition to the pressure control function, a variable orifice (e.g. directional valve) is used to adjust the differential pressure upstream and downstream of the orifice. This is used to control the pump flow. The pump flow is equal to the actual required flow by the consumer, regardless of changing pressure levels.

The pressure control overrides the flow control function.

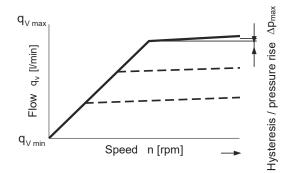
#### Note


The DRS (DFR1) valve version has no connection between X and the reservoir. Unloading the LS-pilot line must be possible in the valve system.

Because of the flushing function sufficient unloading of the X-line must also be provided.

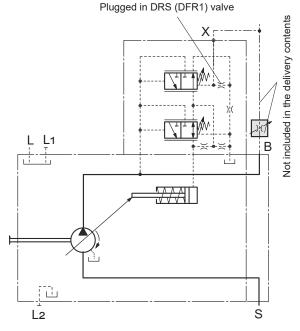
#### Static characteristic

(Flow control at  $n_1 = 1500$  rpm;


$$t_{fluid} = 120^{\circ}F (50^{\circ}C)$$



<sup>1)</sup> In order to prevent damage to the pump and the system, this setting range is the permissible setting range and it is not allowed to be exceeded.


The range of possible settings at the valve is higher.

#### Static characteristic at variable speed



Possible connections at port B (not included in the delivery, order separately)

#### Circuit diagram



|            | Port for                          |
|------------|-----------------------------------|
| В          | Service line                      |
| S          | Suction line                      |
| L \ L1 \ 2 | Case drain fluid (L1 \ 2 plugged) |
| Χ          | Pilot pressure                    |

#### Differential pressure $\Delta p$

Standard setting: 200 to 320 psi (14 to 22 bar).

If another setting is required, please state in clear text.

Relieving the load on port X to the reservoir results in a zero stroke ("standby") pressure which lies about 15 to 30 psi (1 to 2 bar) higher than the differential pressure  $\Delta p$ ). No account is taken of system influences.

#### Controller data

Data pressure control DR, see page 12. Maximum flow deviation measured with drive speed n = 1500 rpm.

| N  | G       | 10    | 18    | 28    | 45    | 60/<br>63 | 72    | 85    | 100   |
|----|---------|-------|-------|-------|-------|-----------|-------|-------|-------|
|    | gpm     | 0.13  | 0.24  | 0.26  | 0.48  | 0.66      | 0.66  | 0.83  | 0.83  |
| ζď | (I/min) | (0.5) | (0.9) | (1.0) | (1.8) | (2.5)     | (2.5) | (3.1) | (3.1) |

Control fluid consumption

DRF (DFR) \_\_\_\_ maximum approx. 0.8 gpm (3 l/min) DRS (DFR1) \_\_ \_maximum approx. 0.8 to 1.2 gpm (3 to 4.5 l/min)

### \_A... – Pressure, flow and power control

Pressure control equipped as DR(G), see page 12 (13). Flow control equipped as DRF, DRS.

In order to achieve a constant drive torque with varying operating pressures, the swivel angle and with it the output flow from the axial piston pump is varied so that the product of flow and pressure remains constant. Flow control is possible below the power control curve.

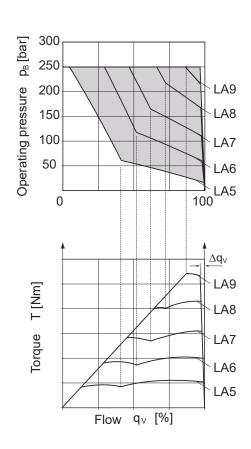
When ordering please state the power characteristics to be set ex works in clear text, e.g. 27 HP (20 kW) at 1500 rpm.

#### Controller data

For pressure controller DR data, see page 12. For flow control FR data, see page 13.

#### Controller data

Maximum control fluid consumption, see page 1


| Beginning of control | ordine i lin-tt (Nm)) for size |              |               |               |                 |               |               | Code |
|----------------------|--------------------------------|--------------|---------------|---------------|-----------------|---------------|---------------|------|
| [psi (bar)]          | 18                             | 28           | 45            | 63            | 72              | 85            | 100           |      |
| 145 to 510           | 2.80 - 8.92                    | 4.4 – 14     | 7.4 – 22.1    | 11 – 32       | 12.5 – 36.3     | 15 – 42       | 24 - 68       | LA5  |
| (10 to 35)           | (3.8 - 12.1)                   | (6 - 19)     | (10 - 30)     | (15 - 43)     | (17 – 49.2)     | (20 - 57)     | (24 - 68)     |      |
| 520 to 1015          | 8.92 – 17.2                    | 14 – 26.5    | 22.2 – 43.5   | 32 – 61       | 36.4 – 69.9     | 42 – 83       | 68.1 - 132    | LA6  |
| (36 to 70)           | (12.2 – 23.3)                  | (19.1 - 36)  | (30.1 - 59)   | (43.1 – 83)   | (49.3 – 94.9)   | (57.1 - 112)  | (68.1 - 132)  |      |
| 1030 to 1520         | 17.2 –24.9                     | 26.6 – 38.4  | 43.6 – 62     | 61 – 88       | 70 – 100.3      | 83 – 118      | 132.1 - 189   | LA7  |
| (71 to 105)          | (23.4 – 33.7)                  | (36.1 -52)   | (59.1 - 84)   | (83.1 – 119)  | (95.0 – 136.0)  | (112.1 - 160) | (132.1 - 189) |      |
| 1535 to 2030         | 24.9 –33.2                     | 38.4 – 51.6  | 62 – 83       | 88 – 116      | 100.4 – 132.3   | 118 – 156     | 189.1 - 249   | LA8  |
| (106 to 140)         | (33.8 – 45)                    | (52.1 - 70)  | (84.1 - 112)  | (119.1 – 157) | (136.1 – 179.4) | (160.1 – 212) | (189.1 - 249) |      |
| 2045 to 3335         | 33.2 – 55.2                    | 51.7 – 82.4  | 83 – 128      | 116 – 178     | 132.4 – 203     | 156 – 189     | 249.1 - 419   | LA9  |
| (141 to 230)         | (45.1 - 74.8)                  | (70.1 - 117) | (112.1 - 189) | (157.1 – 240) | (179.5 – 274)   | (212.1 – 255) | (249.1 - 419) |      |

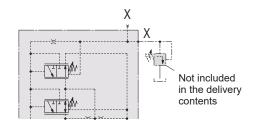
Conversion of the torque values in power [kW]:

$$P = \frac{T}{6.4}$$
 [kW] (at 1500 rpm) or

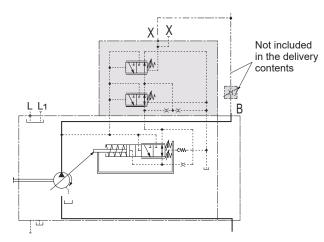
$$P = \frac{2\pi \cdot T \cdot n}{60000} \text{ [kW]}$$

#### Static curves and torque characteristic




#### Circuit diagram (LAXD)

with pressure cut-off




#### Circuit diagram (LAXDG)

with pressure cut-off, remotely operated

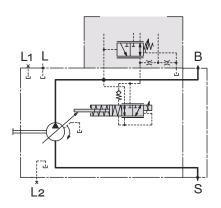


#### Circuit diagram (LAXDS) with pressure and flow control



### EP - Electro-proportional control




Electro-proportional control makes a stepless and reproducible setting of the pump displacement possible directly via the swashplate. The control force of the control piston is applied by a proportional solenoid. The control is proportional to the current (for start of control, see table right).

In a depressurized state, the pump is swiveled to its initial position ( $V_{g\,\text{max}}$ ) by an adjusting spring. If the operating pressure exceeds 200 psi (14 bar), the pump will swivel from  $V_{g\,\text{max}}$  to  $V_{g\,\text{min}}$  without control by the solenoid (control current < start of control). A PWM signal is used to control the solenoid.

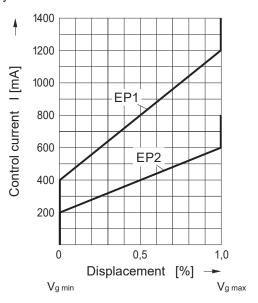
**EP.D**: The pressure control regulates the pump displacement back to Vg min after the set target pressure has been reached.

A minimum operating pressure of 200 psi (14 bar) is needed for control. The necessary control fluid is taken from the high pressure.

#### Circuit diagram EP.D



|            | Port for                            |
|------------|-------------------------------------|
| В          | Service line                        |
| S          | Suction line                        |
| L \ L1 \ 2 | Case drain fluid ( L1 \ 2 plugged ) |
| Χ          | Control pressure                    |


| Technical data, solenoid                 | EP1              | EP2              |
|------------------------------------------|------------------|------------------|
| Voltage                                  | 12 V (±20 %)     | 24 V (±20 %)     |
| Control current                          |                  |                  |
| Start of control at V <sub>g min</sub>   | 400 mA           | 200 mA           |
| End of control at V <sub>g max</sub>     | 1200 mA          | 600 mA           |
| Limiting current                         | 1.54 A           | 0.77 A           |
| Nominal resistance<br>(at 68 °F (20 °C)) | 5.5 Ω            | 22.7 Ω           |
| Dither frequency                         | 100 to<br>200 Hz | 100 to<br>200 Hz |
| Actuated time                            | 100 %            | 100 %            |

For protection rating, please refer to "Socket version" on page 55

Operating temperature range at valve -4 °F to 239 °F (-20 °C to +115 °C).

#### Characteristic EP1/2

Hysteresis < 5 %



#### Note

### The spring return at the controller is not a safety device.

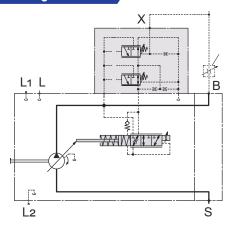
Dirt contamination (contaminated hydraulic fluid, wear or residual dirt from system components) could cause the controller to stick in an undefined position. The volume flow of the axial piston unit will then no longer follow the commands of the operator.

Check whether remedial measures for your application are needed on your machine in order to put the driven consumer in a safe state (e.g. immediate stop).

### EK - Electro-proportional control with controller cut-off

The variant EK... is based completely on the variant EP...

In addition to the electro-proportional control function, a controller cut-off is integrated in the electric characteristic


The pump then swivels to  $V_{g \text{ max}}$  if the control signal is lost (e.g. cable break) and then works with the DRF settings (see page 14). The controller cut-off is only intended for short-term use and not for permanent use if the control signal is lost. If the control signal is lost, the pump swivel times will be reduced by the EK valve.

A PWM signal is used to control the solenoid.

A minimum operating pressure of 200 psi (14 bar) is needed for control. The necessary control fluid is taken from the high pressure.

The  $V_{g \ max}$  position is maintained by the force of the adjusting spring. To overcome the force of this spring, the solenoid must be subjected to excessive current (Ires).

#### Circuit diagram EK.DF



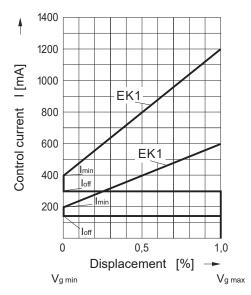
|            | Port for                            |
|------------|-------------------------------------|
| В          | Service line                        |
| S          | Suction line                        |
| L \ L1 \ 2 | Case drain fluid ( L1 \ 2 plugged ) |
| X          | Control pressure                    |

#### Note

### The spring return at the controller is not a safety device.

Dirt contamination (contaminated hydraulic fluid, wear or residual dirt from system components) could cause the controller to stick in an undefined position. The volume flow of the axial piston unit will then no longer follow the commands of the operator.

Check whether remedial measures for your application are needed on your machine in order to put the driven consumer in a safe state (e.g. immediate stop).


| Technical data, solenoid                 | EK1              | EK2              |
|------------------------------------------|------------------|------------------|
| Voltage                                  | 12 V (±20 %)     | 24 V (±20 %)     |
| Control current                          |                  |                  |
| Start of control at V <sub>g min</sub>   | 400 mA           | 200 mA           |
| End of control at V <sub>g max</sub>     | 1200 mA          | 600 mA           |
| Limiting current                         | 1.54 A           | 0.77 A           |
| Nominal resistance<br>(at 68 °F (20 °C)) | 5.5 Ω            | 22.7 Ω           |
| Dither frequency                         | 100 to<br>200 Hz | 100 to<br>200 Hz |
| Actuated time                            | 100 %            | 100 %            |
|                                          |                  |                  |

For protection rating, please refer to "Socket version" on page 55

Operating temperature range at valve -4 °F to 239 °F (-20 °C to +115 °C).

#### Characteristic EK

Hysteresis < 5 %



|           | EK1.   | EK2.  |
|-----------|--------|-------|
| Imin [mA] | 400    | 200   |
| Imax [mA] | 1200   | 600   |
| loff [mA] | < 300  | < 150 |
| Ires [mA] | > 1200 | > 600 |

For changes in current, ramp times of > 200 ms must be observed.

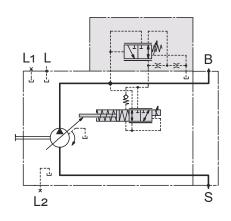
### EP(K).DF / EP(K).DS - EP(K) with pressure and flow control

A hydraulic pressure flow control is superimposed on the electro-proportional control.

The pressure control regulates the pump displacement back to  $V_{g\,\text{min}}$  after the set target pressure has been reached.

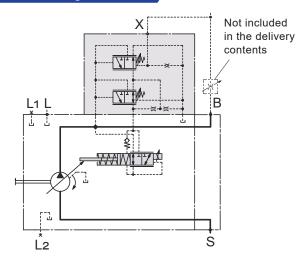
This function is super-imposed on the EP or EK control, i.e. the control-current dependent function is executed below the target pressure.

Setting range from 290 to 3600 psi (20 to 250 bar).


For the pressure flow control.

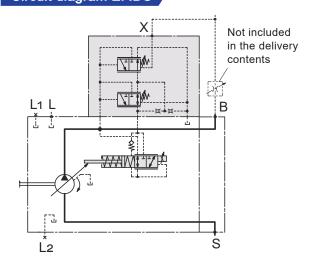
Pressure control has priority over electro-proportional control and flow control.

With flow control, the pump flow can be influenced in addition to pressure control. The pump flow is thus equal to the actual amount of hydraulic fluid required by the consumer. This is achieved using the differential pressure at the consumer (e.g. orifice).


The EP.DS or EK.DS version has no connection between X and the reservoir (load sensing).

#### Circuit diagram EP.D




|            | Port for                          |
|------------|-----------------------------------|
| В          | Service line                      |
| S          | Suction line                      |
| L \ L1 \ 2 | Case drain fluid (L1 \ 2 plugged) |

#### Circuit diagram EP.DF



|            | Port for                          |
|------------|-----------------------------------|
| В          | Service line                      |
| S          | Suction line                      |
| L \ L1 \ 2 | Case drain fluid (L1 \ 2 plugged) |
| Χ          | Control pressure                  |

#### Circuit diagram EP.DS



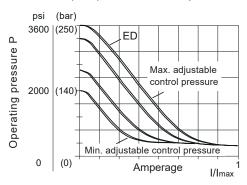
|            | Port for                          |
|------------|-----------------------------------|
| В          | Service line                      |
| S          | Suction line                      |
| L \ L1 \ 2 | Case drain fluid (L1 \ 2 plugged) |
| X          | Control pressure                  |

### EP(K).ED - EP(K) with electro-hydraulic pressure control

The ED valve is set to a certain pressure by a specified variable solenoid current.

When a change is made at the consumer (load pressure), the position of the control piston will shift.

This causes an increase or decrease in the pump swivel angle (flow) in order to maintain the electrically set pressure level.


The pump thus only delivers as much hydraulic fluid as the consumers can take. The pressure can be set steplessly by the solenoid current.

As the solenoid current signal drops towards zero, the pressure will be limited to pmax by an adjustable hydraulic pressure cut-off (negative characteristic, e.g. for fan drives ). A PWM signal is used to control the solenoid.

#### Static current-pressure characteristic ED

(negative characteristic)

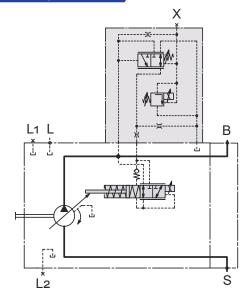

(measured with pump in zero stroke)



Hysteresis static current-pressure characteristic < 45 psi (3 bar).

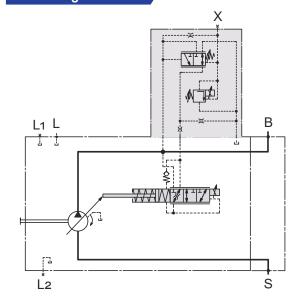
#### Static flow-pressure characteristic

(at n= 1500 rpm; tfluid = 120 °F (50 °C))




#### Controller data

Standby standard setting :


290 psi (20 bar). Other values on request. Hysteresis / pressure rise  $\Delta p$  60 psi (4 bar)

#### Circuit diagram EP.ED



|            | Port for                          |
|------------|-----------------------------------|
| В          | Service line                      |
| S          | Suction line                      |
| L \ L1 \ 2 | Case drain fluid (L1 \ 2 plugged) |
| X          | Control pressure                  |

#### Circuit diagram EK.ED



|            | Port for                          |
|------------|-----------------------------------|
| В          | Service line                      |
| S          | Suction line                      |
| L \ L1 \ 2 | Case drain fluid (L1 \ 2 plugged) |
| Χ          | Control pressure                  |

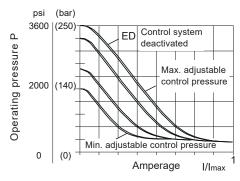
### ED - Electro-hydraulic pressure control



The ED valve is set to a certain pressure by a specified variable solenoid current.

When a change is made at the consumer (load pressure), the position of the control piston will shift.

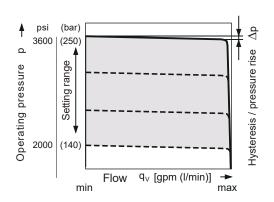
This causes an increase or decrease in the pump swivel angle (flow) in order to maintain the electrically set pressure level.


The pump thus only delivers as much hydraulic fluid as the consumers can take. The desired pressure level can be set steplessly by varying the solenoid current.

As the solenoid current signal drops towards zero, the pressure will be limited to pmax by an adjustable hydraulic pressure cut-off (secure fail safe function in case of a loss of power, e.g. for fan drives ).

The response time characteristic of the ED-control was optimized for the use as a fan drive system. When ordering, state the type of application in clear text.

#### Static current-pressure characteristic ED

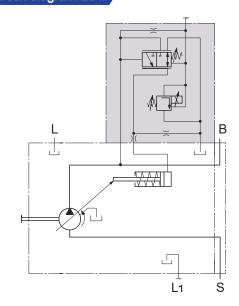

(measured at pump in zero stroke – negative characteristic)



Hysteresis static current-press. characteristic < 45 psi (3 bar)

#### Static flow-pressure characteristic

(at n= 1500 rpm; t<sub>fluid</sub> = 120 °F (50 °C))




#### Controller data

Standby standard setting 290 psi (20 bar), other values on request.

Hysteresis and pressure rise  $\Delta p < 60 \text{ psi } (4 \text{ bar})$ . Control flow consumption 0.8 to 1.2 gpm (3 to 4.5 l/min).

#### Circuit diagram ED.



|        | Port for                |
|--------|-------------------------|
| В      | Service line            |
| S      | Suction line            |
| L \ L1 | Case drain (L1 plugged) |

| Technical data, solenoid                    | ED71             | ED72             |
|---------------------------------------------|------------------|------------------|
| Voltage                                     | 12 V (±20 %)     | 24 V (±20 %)     |
| Control current                             |                  |                  |
| Control begin at q g min                    | 100 mA           | 50 mA            |
| End of control at <b>q</b> <sub>g max</sub> | 1200 mA          | 600 mA           |
| Limiting current                            | 1.54 A           | 0.77 A           |
| Nominal resistance<br>(at 68 °F (20 °C))    | 5.5 Ω            | 22.7 Ω           |
| Dither frequency                            | 100 to<br>200 Hz | 100 to<br>200 Hz |
| Actuated time                               | 100 %            | 100 %            |
|                                             |                  |                  |

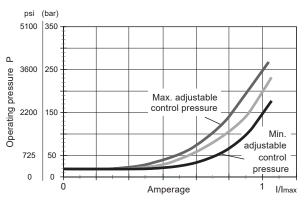
Operating temperature range at valve -4 °F to 239 °F (-20 °C to +115 °C)

### ER - Electro-hydraulic pressure control



The ER valve is set to a certain pressure by a specified variable solenoid current.

When a change is made at the consumer (load pressure), the position of the control piston will shift.

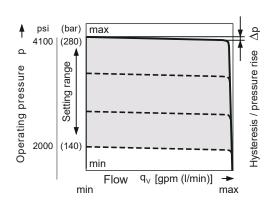

This causes an increase or decrease in the pump swivel angle (flow) in order to maintain the electrically set pressure level.

The pump thus only delivers as much hydraulic fluid as the consumers can take. The desired pressure level can be set steplessly by varying the solenoid current.

As the solenoid current signal drops towards zero, the pressure will be limited to pmin (stand by).

#### Static current-pressure characteristic ER

(measured with pump in zero stroke positive characteristic)




Hysteresis static current-pressure characteristic < 45 psi (3 bar)

Influence of pressure setting on stand by ± 30 psi (2 bar)

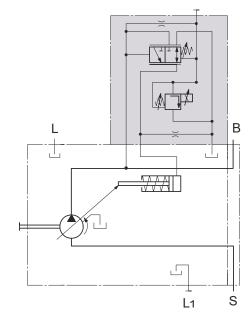
#### Static flow-pressure characteristic

(at n= 1500 rpm;  $t_{fluid} = 120 \, ^{\circ}F \, (50 \, ^{\circ}C)$ )



#### Controller data

Standby standard setting 200 psi (14 bar), other values on request.


Hysteresis and pressure rise

 $\Delta p < 60 \text{ psi } (4 \text{ bar}).$ 

Control flow consumption

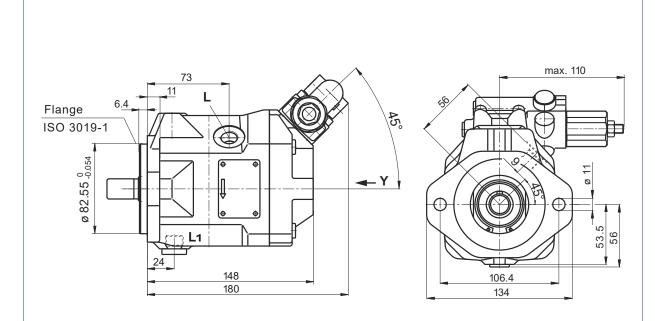
0.8 to 1.2 gpm (3 to 4.5 l/min).

#### Circuit diagram ER.

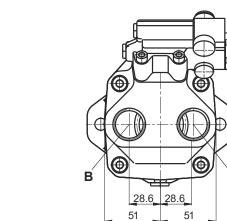


|        | Port for                  |
|--------|---------------------------|
| В      | Service line              |
| S      | Suction line              |
| L \ L1 | Case drain ( L1 plugged ) |

| Technical data, solenoid                    | ED71             | ED72             |
|---------------------------------------------|------------------|------------------|
| Voltage                                     | 12 V (±20 %)     | 24 V (±20 %)     |
| Control current Control begin at Qg min     | 100 mA           | 50 mA            |
| End of control at <b>q</b> <sub>g max</sub> | 1200 mA          | 600 mA           |
| Limiting current                            | 1.54 A           | 0.77 A           |
| Nominal resistance<br>(at 68 °F (20 °C))    | 5.5 Ω            | 22.7 Ω           |
| Dither frequency                            | 100 to<br>200 Hz | 100 to<br>200 Hz |
| Actuated time                               | 100 %            | 100 %            |

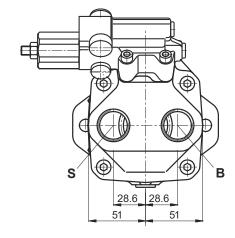

Operating temperature range at valve -4 °F to 239 °F (-20 °C to +115 °C)




**DR** – Hydraulic pressure controller

Centering flange SAE version; series 52

Before finalizing your design request a certified installation drawing. Dimensions in mm.

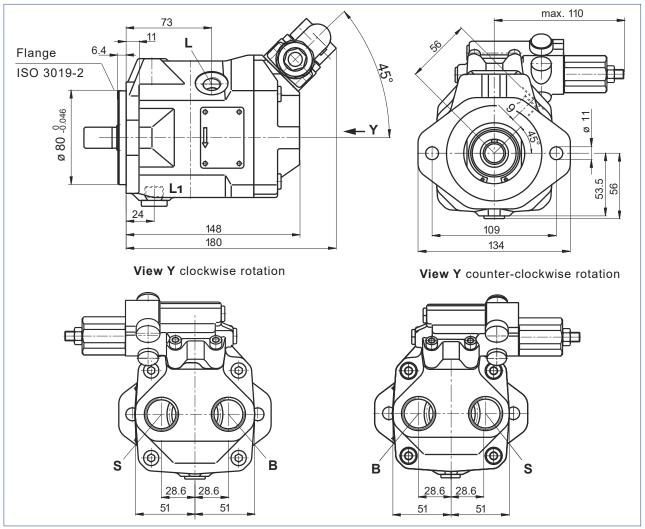



View Y clockwise rotation



View Y counter-clockwise rotation








#### **DR** – Hydraulic pressure controller

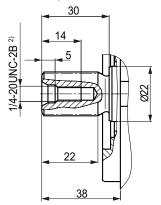
Centring Flange, Metric Version

Before finalizing your design request a certified installation drawing. Dimensions in mm.

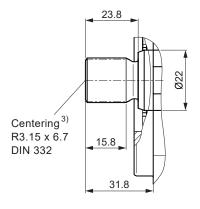


#### Ports

| Designation         | Port for       | Standard                | Size 1)                         | p <sub>max</sub><br>[psi (bar)] <sup>2)</sup> | State            |
|---------------------|----------------|-------------------------|---------------------------------|-----------------------------------------------|------------------|
| В                   | Working port   | DIN 3852                | M27 × 2; 16 (0.63) deep         | 4550 (315)                                    | 0                |
| S                   | Suction port   | DIN 3852                | M27 × 2; 16 (0.63) deep         | 75 (5)                                        | 0                |
| L (metric)          | Drain port     | DIN 3852 3)             | M16 × 1.5; 12 (0.47) deep       | 30 (2)                                        | O 4 )            |
| L1 (metric)         | Drain port     | DIN 3852 3)             | M16 × 1.5; 12 (0.47) deep       | 30 (2)                                        | X <sup>4 )</sup> |
| L (SAE)             | Drain port     | ISO 11926 <sup>3)</sup> | 9/16-18UNF-2B; 12 (0.47) deep   | 30 (2)                                        | O 4)             |
| L1 (SAE)            | Drain port     | ISO 11926 <sup>3)</sup> | 9/16-18UNF-2B; 12 (0.47) deep   | 30 (2)                                        | X 4)             |
| X (with adapter)    | Pilot pressure | DIN 3852                | M14 × 1.5; 12 (0.47) deep       | 4550 (315)                                    | 0                |
| X (without adapter) | Pilot pressure | ISO 11926 <sup>2)</sup> | 7/16-20UNF-2B; 11.5 (0.45) deep | 4550 (315)                                    | 0                |

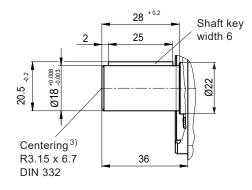

- 1) Regarding the maximum tightening torque, safety instructions must be observed.
- <sup>2)</sup> Depending on the application, momentary pressure spikes can occur. Consider this when selecting measuring equipment and fittings.
- <sup>3)</sup> The spot face can be deeper than as specified in the standard.
- 4) Depending on the installation position, L or L1 must be connected
  - O = Must be connected (plugged on delivery)
  - X = Plugged (in normal operation)



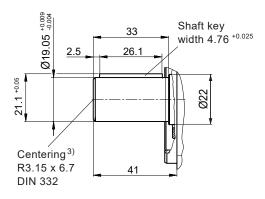

Drive shaft

S

Splined shaft 3/4 in 11T 16/32DP <sup>1)</sup>(SAE J744)




Splined shaft 5/8 in 9T 16/32DP<sup>1)</sup> (SAE J744)

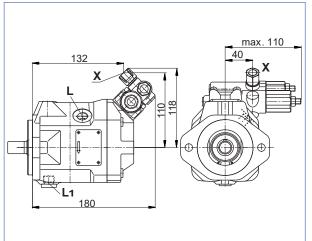



P

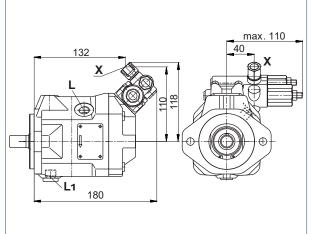
Parallel keyed shaft DIN 6885, A6x6x25



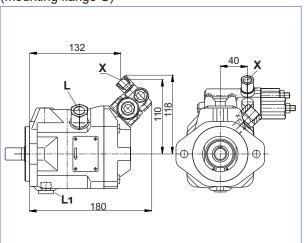
Parallel keyed shaft ISO 3019-1 , 19-1



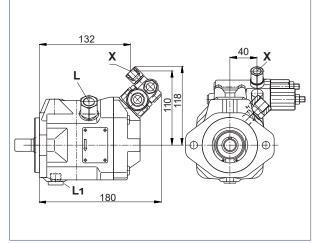

- $^{1)}$  ANSI B92.1a, 30° Pressure Angle, Flat Root, Side Fit, Class 5.
- <sup>2)</sup> Threads conforming to ASME B1.1 Unified Inch Screw Thread Standard.
- <sup>3)</sup> Observe safety instructions regarding maximum tightening torque.
- <sup>4)</sup> Axial coupling fixation, e.g., using a clamping coupling or radially mounted locking screw.



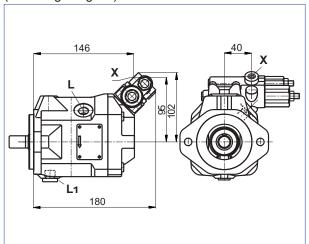

Dimensions [mm]


DRG - Pressure controller, remote controlled (mounting flange A) 1)




DFR / DFR1 - Pressure, flow controller (mounting flange A) 1)




DRG - Pressure controller, remote controlled (mounting flange C) 1) 2)




DFR / DFR1 - Pressure, flow controller (mounting flange C)<sup>1)2)</sup>



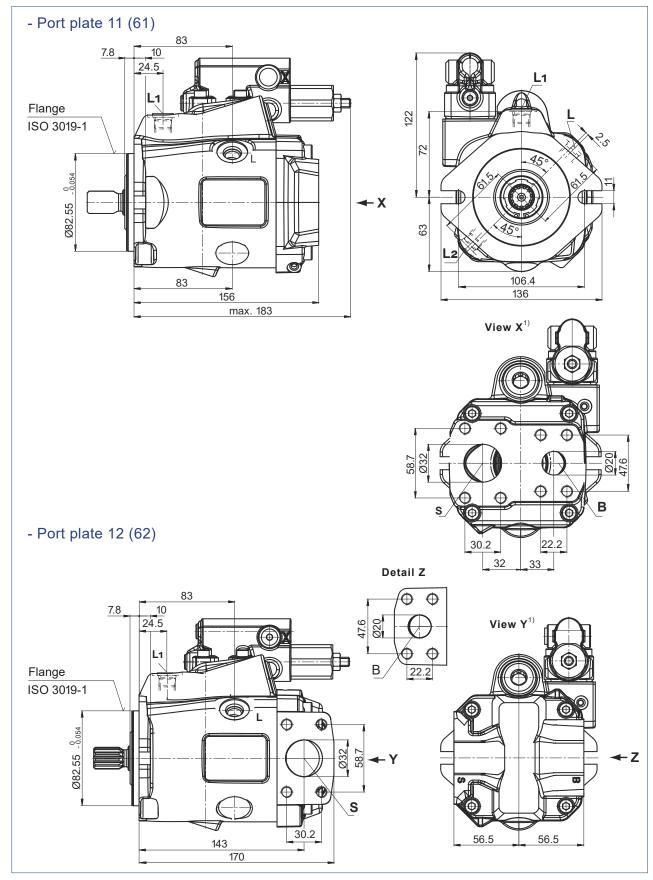
DRG - Pressure controller, remote controlled (mounting flange C) 1) 3)



DFR / DFR1 - Pressure, flow controller (mounting flange C) 1) 3)



- 1) Valve mounting for clockwise or counter-clockwise rotation see page 29 and 30.
- 2) With metric adapter.
- 3) Version complete SAE without adapter.


# Dimensions, size 18<sup>1)</sup>



**DR** – Hydraulic pressure controller

Clockwise rotation, series 53

Before finalizing your design request a certified installation drawing. Dimensions in mm.



Dimensions of working ports turned through 180° for counter-clockwise rotation



X 8)

Ο

30 (2)

ΑΙ

| Designation | Port for                    | Standard                | Size 4)                                   | p <sub>max</sub><br>[psi (bar)] <sup>6)</sup> | State |
|-------------|-----------------------------|-------------------------|-------------------------------------------|-----------------------------------------------|-------|
| В           | Service line, fixing thread | SAE J518<br>ASME B1.1   | 3/4 in<br>3/8-16UNC-2B; 0.75 (19) deep    | 4550 (315)                                    | 0     |
| S           | Suction line, fixing thread | SAE J518<br>ASME B1.1   | 1 1/4 in<br>7/16-14UNC-2B; 0.79 (20) deep | 75 (5)                                        | 0     |
| L           | Case drain fluid            | ISO 11926 <sup>7)</sup> | 3/4-16UNF-2B; 0.47 (12) deep              | 30 (2)                                        | O 8)  |

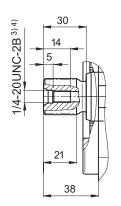
ISO 11926 7)

ISO 11926 <sup>7)</sup>

#### Drive shaft

S

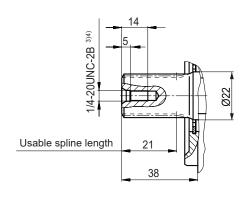
L1


Χ

**Ports** 

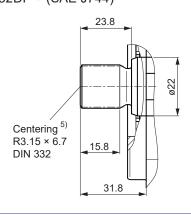
Splined shaft 3/4 in 11T 16/32DP<sup>1)</sup> (SAE J744)

Case drain fluid

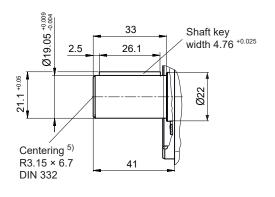

Pilot pressure



R Splined shaft 3/4 in 11T 16/32DP <sup>1)2)</sup> (SAE J744)


7/16-20UNF-2A; 0.45 (11.5) deep 4550 (315)

3/4-16UNF-2B; 0.47 (12) deep




U

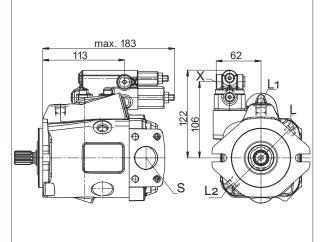
Splined shaft 5/8 in 9T 16/32DP 1) (SAE J744)



Parallel keyed shaft ISO 3019-1, 19-1

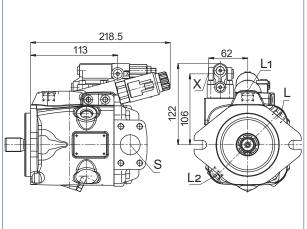


- <sup>1)</sup> Spline per ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5.
- <sup>2)</sup> Spline (according to ANSI B92.1a) may have deviations in runout compared to the standard.
- 3) Threads conform to ASME B1.1 standard.
- <sup>4)</sup> Observe safety instructions regarding maximum tightening torque.
- <sup>5)</sup> Axial coupling fixation, e.g., using a clamping coupling or radially mounted locking screw.
- <sup>6)</sup> Depending on the application, momentary pressure peaks may occur. Keep this in mind when selecting measuring devices and accessories.
- 7) Metric fastening threads may deviate from standard values.
- 8) The port face may be deeper than the standard specification.


## Dimensions, size 18<sup>1)</sup>

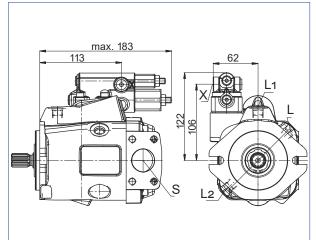


Before finalizing your design request a certified installation drawing. Dimensions in mm.


**DRG** 

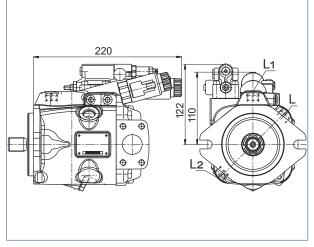
Pressure controller, remote controlled, series 53




**EP.D. / EK.D.** 

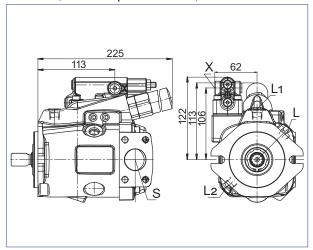
Electro-proportional control, series 53




**DRF / DRS** 

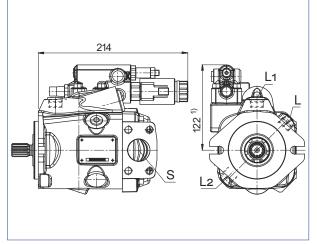
Pressure and flow control, series 53




EP.ED / EK.ED

Electro-proportional control, series 53




LA.D.

Pressure, flow and power control, series 53



ED7. / ER7.

Electro-hydraulic pressure control, series 53



<sup>1)</sup> ER7.: 6.18 inches (157 mm) if using an intermediate plate pressure controller.

# Dimensions, size 28<sup>1) 2)</sup>

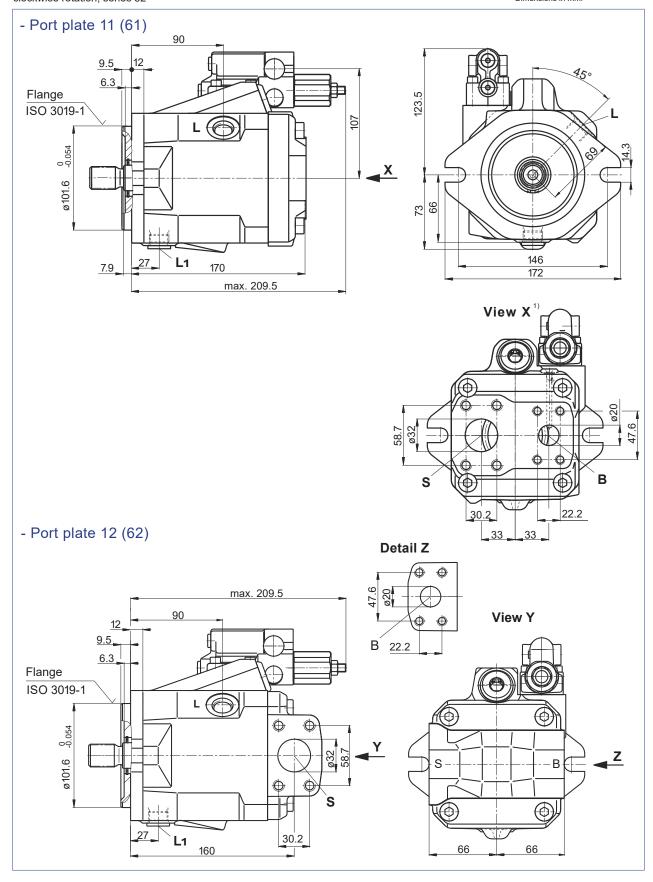


#### DR - Hydraulic pressure controller

clockwise rotation, series 53

Before finalizing your design request a certified installation drawing. Dimensions in mm.




Dimensions of service line ports turned through 180° for counter-clockwise rotation.

# Dimensions, size 28<sup>1) 2)</sup>



DR - Hydraulic pressure controller clockwise rotation, series 52

Before finalizing your design request a certified installation drawing. Dimensions in mm.



<sup>1)</sup> Dimensions of service line ports turned through 180° for counter-clockwise rotation



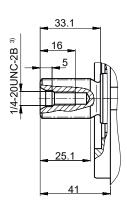
PA10VO series 52 and 53

| Ports      |                                                                |                         |                                           |                                               |                     |
|------------|----------------------------------------------------------------|-------------------------|-------------------------------------------|-----------------------------------------------|---------------------|
| Port plate | 11, 12                                                         | Standard                | Size                                      | p <sub>max</sub><br>[psi (bar)] <sup>1)</sup> | State <sup>5)</sup> |
| В          | Working port<br>(standard pressure series)<br>Fastening thread | ISO 6162-1<br>DIN 13    | 3/4 in<br>M10 × 1.5; 17 (0.67) deep       | 4550 (315)                                    | 0                   |
| S          | Suction port<br>(standard pressure series)<br>Fastening thread | ISO 6162-1<br>DIN 13    | 1 1/4 in<br>M10 × 1.5; 17 (0.67) deep     | 75 (5)                                        | 0                   |
| Port plate | 61, 62                                                         | Standard                | Size                                      | p <sub>max</sub><br>[psi (bar)] <sup>1)</sup> | State <sup>5)</sup> |
| В          | Working port<br>(standard pressure series)<br>Fastening thread | ISO 6162-1<br>ASME B1.1 | 3/4 in<br>3/8-16UNC-2B 19 (0.75) deep     | 4550 (315)                                    | 0                   |
| S          | Suction port<br>(standard pressure series)<br>Fastening thread | ISO 6162-1<br>ASME B1.1 | 1 1/4 in<br>7/16-14UNC-2B; 24 (0.94) deep | 75 (5)                                        | 0                   |
| Port plate | 64                                                             | Standard                | Size                                      | p <sub>max</sub><br>[psi (bar)] <sup>1)</sup> | State <sup>5)</sup> |
| В          | Working port                                                   | ISO 11926               | 1 1/16 12 UN-2B; 20 (0.79) deep           | 4550 (315)                                    | 0                   |
| S          | Suction port                                                   | ISO 11926               | 1 5/8 12UN-2B; 17 (0.67) deep             | 75 (5)                                        | 0                   |
| Other por  | ts                                                             | Standard                | Size                                      | p <sub>max</sub><br>[psi (bar)] <sup>1)</sup> | State <sup>5)</sup> |
| L          | Drain port                                                     | ISO 11926 <sup>2)</sup> | 3/4-16UNF-2B; 12 (0.47) deep              | 30 (2)                                        | O 3)                |
| L1 \ L2 4) | Drain port                                                     | ISO 11926 <sup>2)</sup> | 3/4-16UNF-2B; 12 (0.47) deep              | 30 (2)                                        | X 3)                |
| X          | Pilot pressure                                                 | ISO 11926               | 7/16-20UNF-2B; 11.5 (0.45) deep           | 4550 (315)                                    | 0                   |

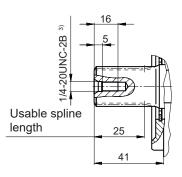
<sup>1)</sup> Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

 $<sup>^{2)}\,\,</sup>$  The countersink may be deeper than specified in the standard.

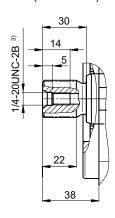
<sup>&</sup>lt;sup>3)</sup> Depending on the installation position, L, L1 or L2 must be connected (also see installation instructions starting on page 80).


<sup>4)</sup> Only for series 53

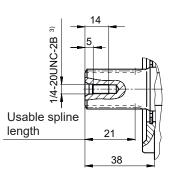
<sup>5)</sup> O = Must be connected (plugged on delivery) X = Plugged (in normal operation)



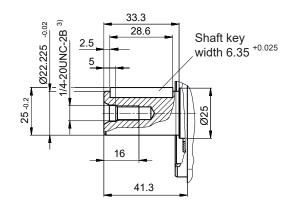

Drive shaft


S Splined shaft 7/8 in 13T 16/32DP1) (SAE J744)

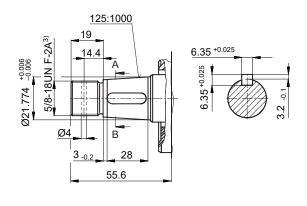



Splined shaft 7/8 in 13T 16/32DP 1)2) (SAE J744)




Splined shaft 3/4 in 11T 16/32DP 1) 2) (SAE J744)




Splined shaft 3/4 in 11T 16/32DP 1) (SAE J744)



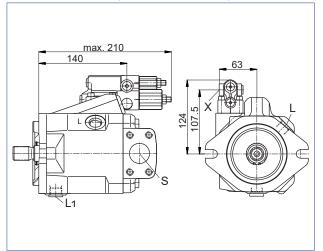
Parallel keyed shaft 22-1<sup>1)2)</sup> (SAE J744)



Tapered keyed shaft (ISO 3019-1)

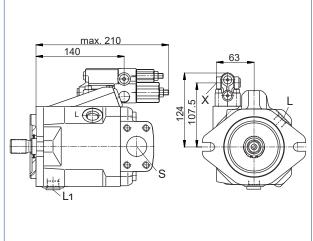


- 1) Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- <sup>2)</sup> Splines according to ANSI B92.1a, spline runout is a deviation from standard ISO 3019-1.
- 3) Thread according to ASME B1.1



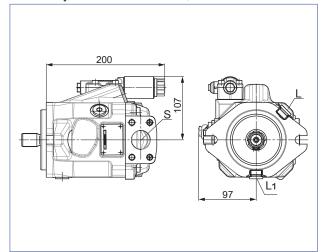

Before finalizing your design request a certified installation drawing.

Dimensions in mm.


**DRG** 

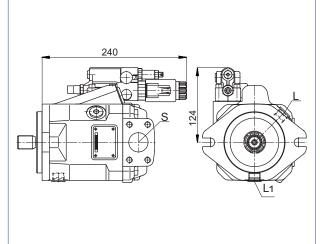
Pressure controller, remote controlled, series 52

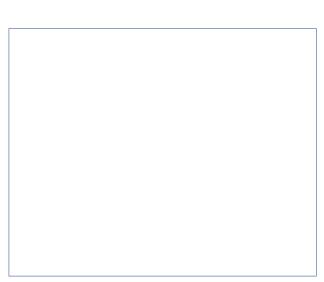



DFR / DFR1

Pressure flow controller, series 52




EC4


Electro-hydraulic control valve, series 52

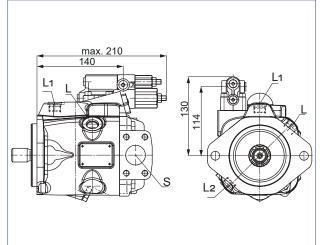


ED7. / ER7.

Electro-prop. pressure control, series 5

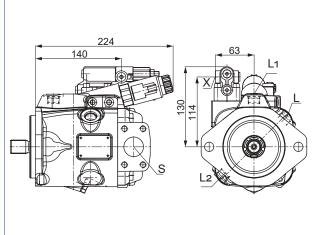






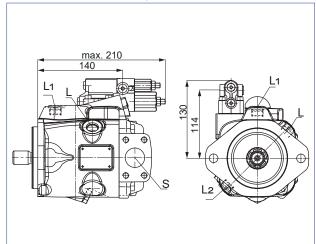



Before finalizing your design request a certified installation drawing.


### **DRG**

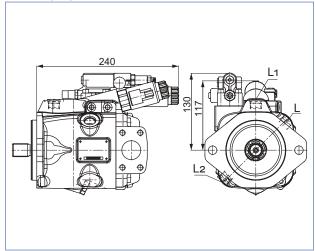
Pressure controller, remote controlled, series 53




### **EP.D. / EK.D.**

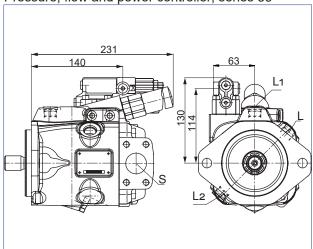
Electro proportional control, series 53




### DRF / DRS / DRSC

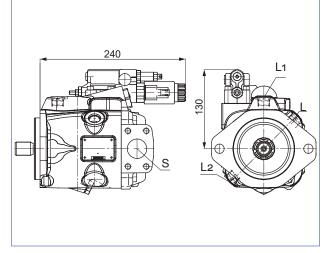
Pressure flow controller, series 53




### EP.ED. / EK.ED.

Electro proportional control, series 53



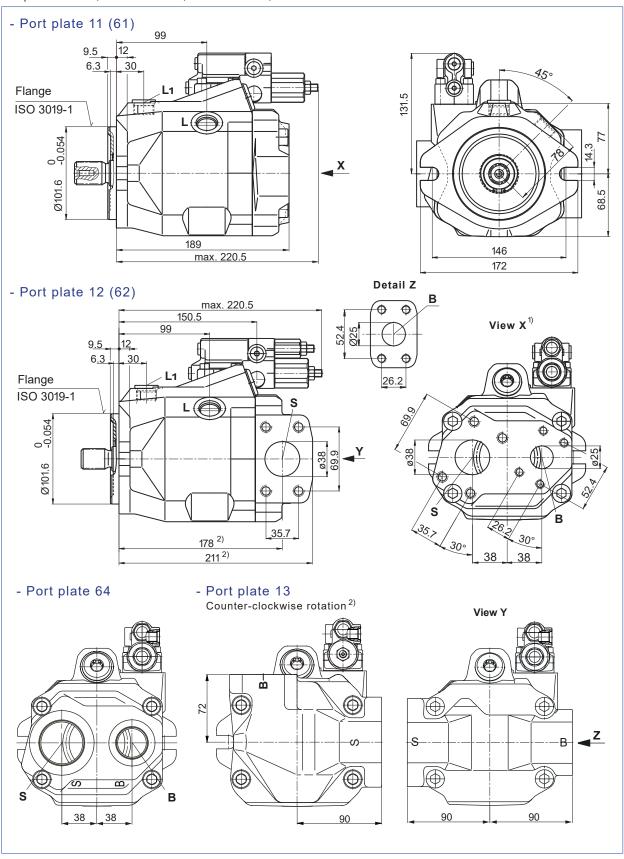

#### LA.D.

Pressure, flow and power controller, series 53



ED7. / ER7.

Electro-prop. pressure control, series 53




## Dimensions, size 45<sup>1)</sup>

### DR - Hydraulic pressure controller

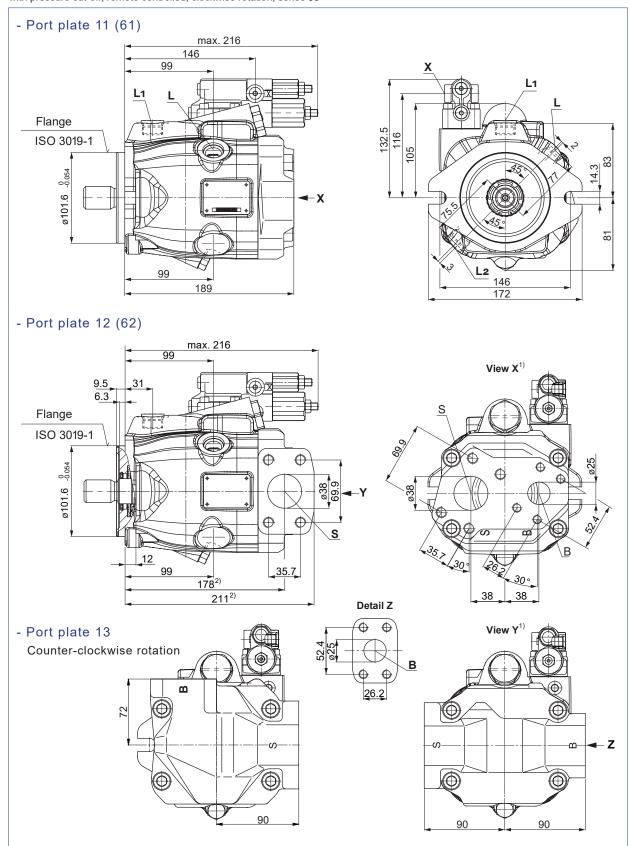
with pressure cut-off, remote controlled, clockwise rotation, series 52

Before finalizing your design request a certified installation drawing. Dimensions in mm.



 $<sup>^{1)}\,</sup>$  Dimensions of working ports turned through 180° for counter-clockwise rotation.

 $<sup>^{2)}</sup>$  For dimensions of working ports S and B for port plate 13 identical as for port plate 12.


# Dimensions, size 45<sup>1)</sup>



### **DRG** – hydraulic pressure controller

with pressure cut-off, remote controlled, clockwise rotation, series 53

Before finalizing your design request a certified installation drawing. Dimensions in mm.



Dimensions of working ports turned through 180° for counter-clockwise rotation.

<sup>&</sup>lt;sup>2)</sup> For dimensions of working ports S and B for port plate 13 identical as for port plate 12.



| Ports                                                                                                |                                                                |                                        |                                           |                                               |                     |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------|-------------------------------------------|-----------------------------------------------|---------------------|
| Port plate                                                                                           | 11, 12, 13                                                     | Standard                               | Size                                      | p <sub>max</sub><br>[psi (bar)] <sup>1)</sup> | State <sup>5)</sup> |
| В                                                                                                    | Working port<br>(standard pressure series)<br>Fastening thread | ISO 6162-1<br>DIN 13                   | 1 in<br>M10 × 1.5; 17 (0.67) deep         | 4550 (315)                                    | 0                   |
| S Suction port ISO 6162-1 1 1/2 in (standard pressure series) DIN 13 M12 × 1.75; 20 Fastening thread |                                                                | 1 1/2 in<br>M12 × 1.75; 20 (0.79) deep | 75 (5)                                    | 0                                             |                     |
| Port plate                                                                                           | 61, 62                                                         | Standard                               | Size                                      | p <sub>max</sub><br>[psi (bar)] <sup>1)</sup> | State <sup>5)</sup> |
| В                                                                                                    | Working port<br>(standard pressure series)<br>Fastening thread | ISO 6162-1<br>ASME B1.1                | 1 in<br>3/8-16UNC-2B 18 (0.71) deep       | 4550 (315)                                    | 0                   |
| S                                                                                                    | Suction port<br>(standard pressure series)<br>Fastening thread | ISO 6162-1<br>ASME B1.1                | 1 1/2 in<br>1/2-13 UNC-2B; 22 (0.87) deep | 75 (5)                                        | 0                   |
| Port plate                                                                                           | 64                                                             | Standard                               | Size                                      | p <sub>max</sub><br>[psi (bar)] <sup>1)</sup> | State <sup>5)</sup> |
| В                                                                                                    | Working port                                                   | ISO 11926                              | 1 5/16 12UN-2B; 20 (0.79) deep            | 4550 (315)                                    | 0                   |
| S                                                                                                    | Suction port                                                   | ISO 11926                              | 1 7/8 12UN-2B; 20 (0.79) deep             | 75 (5)                                        | 0                   |
| Other por                                                                                            | ts                                                             | Standard                               | Size                                      | p <sub>max</sub><br>[psi (bar)] <sup>1)</sup> | State <sup>5)</sup> |
| L                                                                                                    | Drain port                                                     | ISO 11926 <sup>2)</sup>                | 7/8-14UNF-2B; 13 (0.51) deep              | 30 (2)                                        | O 3)                |
| L1 \ L2 4)                                                                                           | Drain port                                                     | ISO 11926 <sup>2)</sup>                | 7/8-14UNF-2B; 13 (0.51) deep              | 30 (2)                                        | X 3)                |
| X                                                                                                    | Pilot pressure                                                 | ISO 11926                              | 7/16-20UNF-2B; 11,5 (0.45) deep           | 4550 (315)                                    | 0                   |

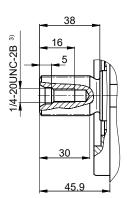
 $<sup>^{1)}\,</sup>$  Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

 $<sup>^{2)}\,\,</sup>$  The countersink may be deeper than specified in the standard.

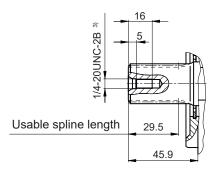
<sup>&</sup>lt;sup>3)</sup> Depending on the installation position, L, L1 or L2 must be connected (also see installation instructions starting on page 80).

<sup>4)</sup> Only for series 53

<sup>5)</sup> O = Must be connected (plugged on delivery) X = Plugged (in normal operation)

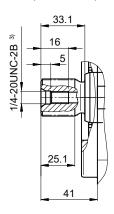



Dimensions [mm]


#### Drive shaft

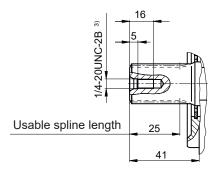
S

Splined shaft 1 in 15T 16/32DP<sup>1)</sup> (SAE J744)




R
Splined shaft 1 in
15T 16/32DP 1)2) (SAE J744)



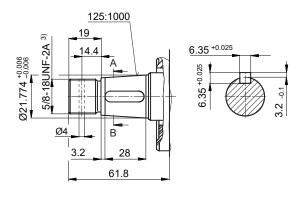

U

Splined shaft 7/8 in 13T 16/32DP <sup>1) 2)</sup> (SAE J744)



W

Splined shaft 7/8 in 13T 16/32DP<sup>1) 2)</sup> (SAE J744)

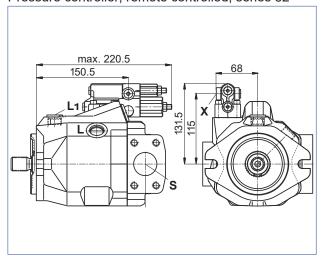



K

Parallel keyed shaft 25-1



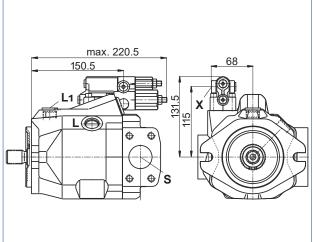
Tapered keyed shaft (ISO 3019-1)




- 1) Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- <sup>2)</sup> Splines according to ANSI B92.1a, spline runout is a deviation from standard ISO 3019-1.
- 3) Thread according to ASME B1.1

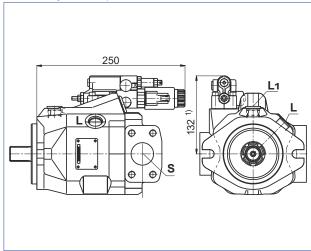


DRG


Pressure controller, remote controlled, series 52



Before finalizing your design request a certified installation drawing. Dimensions in mm.


### DFR / DFR1

Pressure and flow control, series 52

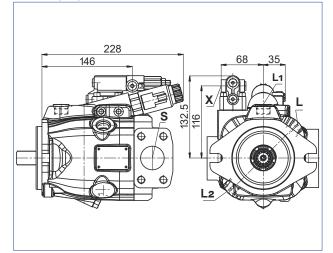


### ED7. / ER7.

Electro-hydraulic pressure control, series 52

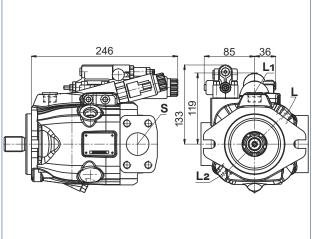





<sup>1)</sup> ER7.: 167 mm if using an intermediate plate pressure controller.

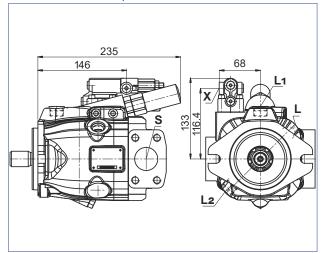


Before finalizing your design request a certified installation drawing. Dimensions in mm.


### **EP.D. / EK.D.**

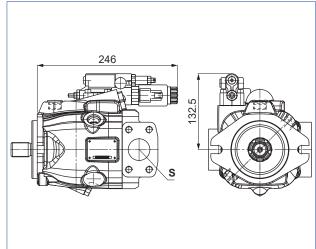
Electro proportional control, series 53

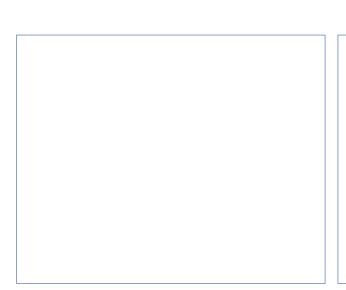



EP.ED. / EK.ED.

Electro-prop. control, series 53

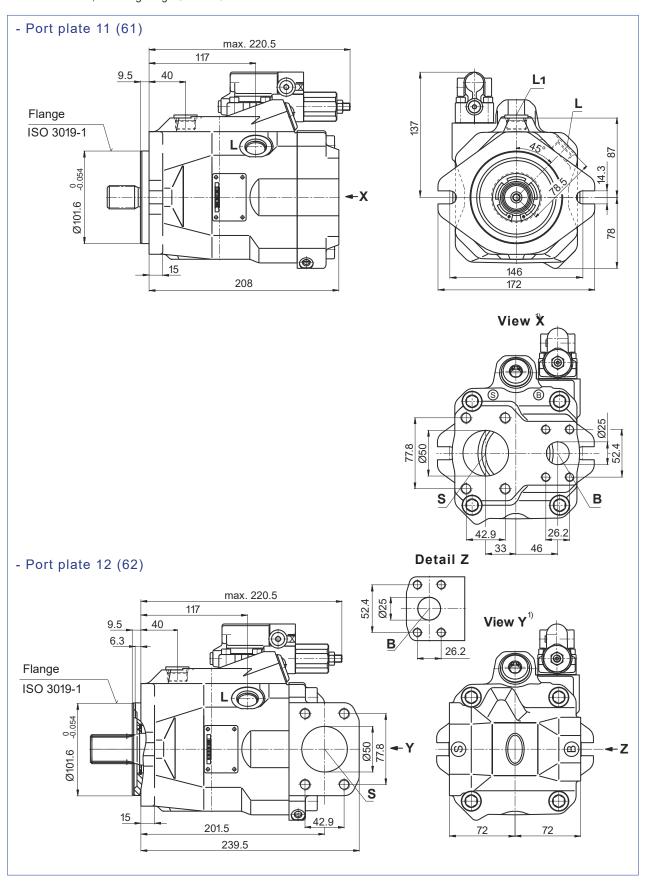



### LA.D.


Pressure, flow and power controller, series 53



ED7. / ER7.


Electro-prop. pressure control, series 53

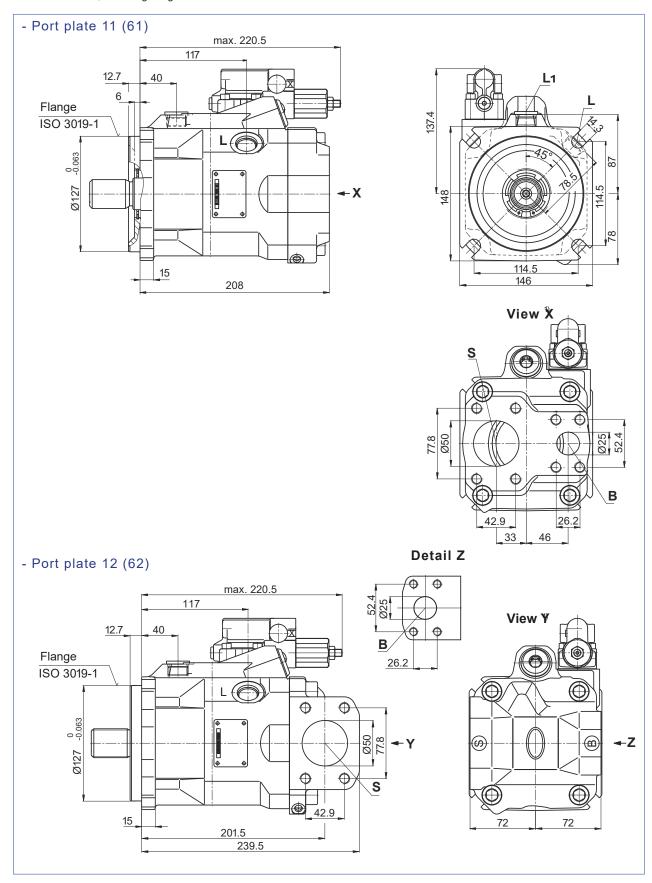






**DR** – Hydraulic pressure controller clockwise rotation, mounting flange C series 52 Before finalizing your design request a certified installation drawing. Dimensions in mm.

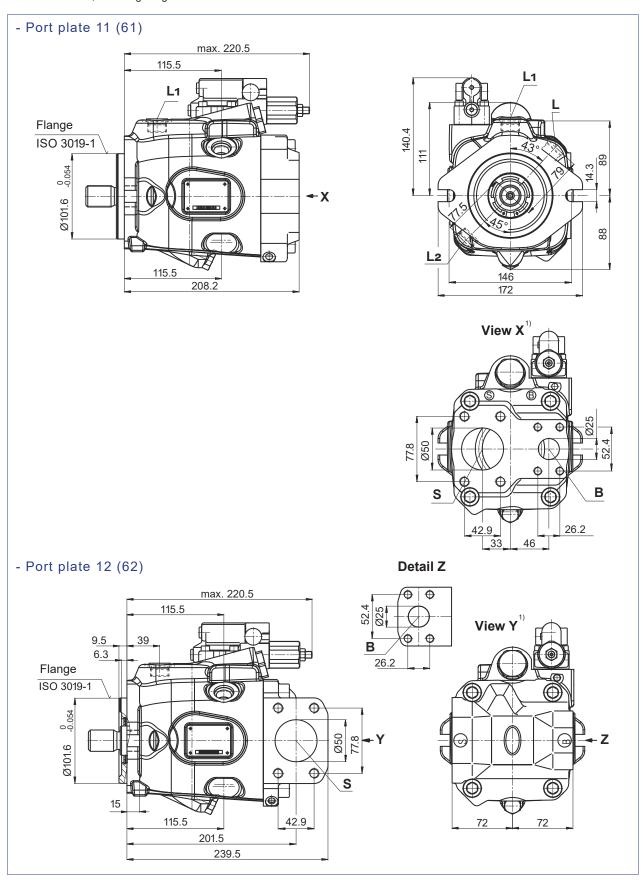



 $<sup>^{1)}\,</sup>$  Dimensions of working ports turned through 180° for counter-clockwise rotation.



### **DR** – Hydraulic pressure controller

clockwise rotation, mounting flange D series 52


Before finalizing your design request a certified installation drawing. Dimensions in mm.

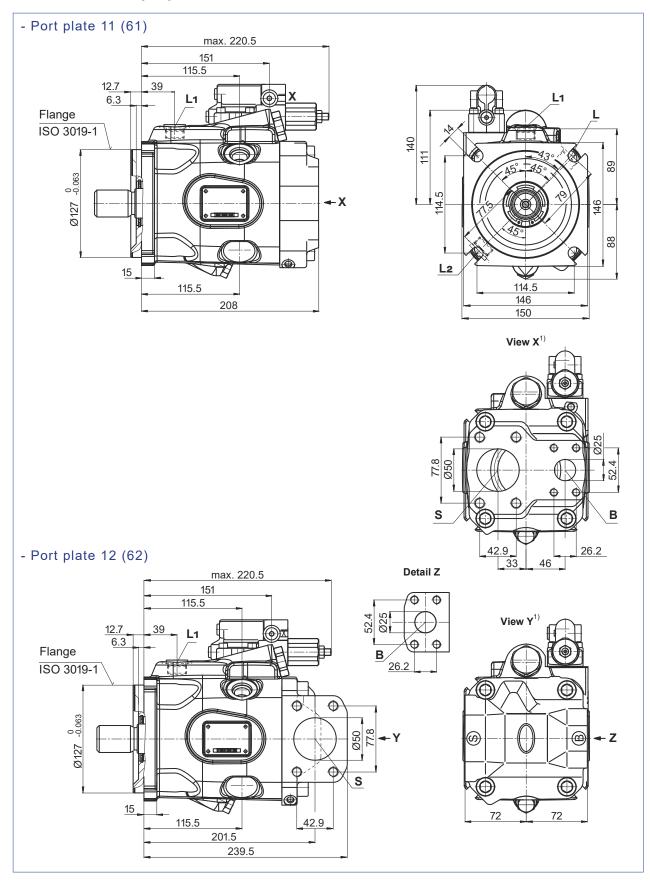


 $<sup>^{1)}\,</sup>$  Dimensions of working ports turned through 180° for counter-clockwise rotation.



**DR** – Hydraulic pressure controller clockwise rotation, mounting flange C series 53 Before finalizing your design request a certified installation drawing. Dimensions in mm.




 $<sup>^{1)}\,</sup>$  Dimensions of working ports turned through 180° for counter-clockwise rotation.



**DR** – Hydraulic pressure controller

clockwise rotation, mounting flange D series 53

Before finalizing your design request a certified installation drawing. Dimensions in mm.



<sup>1)</sup> Dimensions of working ports turned through 180° for counter-clockwise rotation.



| Ports             |                                                                |                         |                                       |                                               |                     |
|-------------------|----------------------------------------------------------------|-------------------------|---------------------------------------|-----------------------------------------------|---------------------|
| Port plate        | 11, 12                                                         | Standard                | Size                                  | p <sub>max</sub><br>[psi (bar)] <sup>1)</sup> | State <sup>5)</sup> |
| В                 | Working port<br>(standard pressure series)<br>Fastening thread | ISO 6162-1<br>DIN 13    | 1 in<br>M10 × 1.5; 17 deep            | 4550 (315)                                    | 0                   |
| S                 | Suction port<br>(standard pressure series)<br>Fastening thread | ISO 6162-1<br>DIN 13    | 2 in<br>M12 × 1.75; 20 deep           | 75 (5)                                        | 0                   |
| Port plate 61, 62 |                                                                | Standard                | Size                                  | p <sub>max</sub><br>[psi (bar)] <sup>1)</sup> | State <sup>5)</sup> |
| В                 | Working port<br>(standard pressure series)<br>Fastening thread | ISO 6162-1<br>ASME B1.1 | 1 in<br>3/8-16UNC-2B; 18 (0.71) deep  | 4550 (315)                                    | 0                   |
| S                 | Suction port<br>(standard pressure series)<br>Fastening thread | ISO 6162-1<br>ASME B1.1 | 2 in<br>1/2-13 UNC-2B; 22 (0.87) deep | 75 (5)                                        | 0                   |
| Other ports       |                                                                | Standard                | Size                                  | p <sub>max</sub><br>[psi (bar)] <sup>1)</sup> | State <sup>5)</sup> |
| L                 | Drain port                                                     | ISO 11926 <sup>2)</sup> | 7/8-14UNF-2B; 13 deep                 | 30 (2)                                        | O 3)                |
| L1 \ L2 4)        | Drain port                                                     | ISO 11926 <sup>2)</sup> | 7/8-14UNF-2B; 13 deep                 | 30 (2)                                        | X 3)                |
| X                 | Pilot pressure                                                 | ISO 11926               | 7/16-20UNF-2B; 11.5 deep              | 4550 (315)                                    | 0                   |

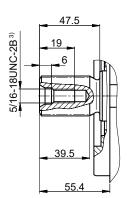
 $<sup>^{1)}\,</sup>$  Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

 $<sup>^{2)}</sup>$  The countersink may be deeper than specified in the standard.

<sup>3)</sup> Depending on the installation position, L, L1 or L2 must be connected (also see installation instructions starting on page 80).

<sup>4)</sup> Only for series 53

<sup>5)</sup> O = Must be connected (plugged on delivery) X = Plugged (in normal operation)

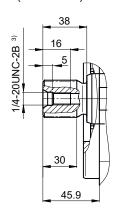



Dimensions [mm


#### Drive shaft

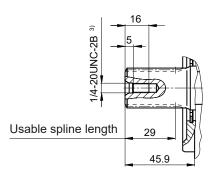
S

Splined shaft 1 1/4 in 14T 12/24DP<sup>1)</sup> (SAE J744)



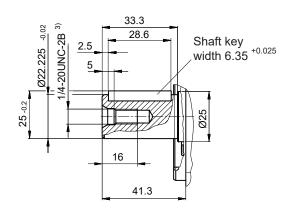

R
Splined shaft 1 1/4 in
14T 12/24DP 1)2) (SAE J744)



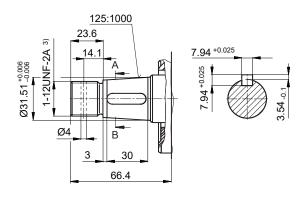

U

Splined shaft 1 in 15T 16/32DP 1) (SAE J744)




W

Splined shaft 1 in 15T 16/32DP<sup>1)2)</sup> (SAE J744)



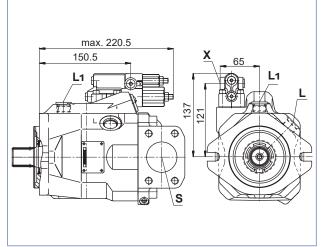

K

Parallel keyed shaft 32-1



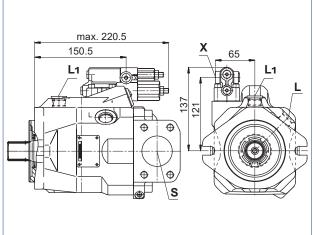
Tapered keyed shaft (ISO 3019-1)




- 1) Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- $^{2)}$  Splines according to ANSI B92.1a, spline runout is a deviation from standard ISO 3019-1.
- 3) Thread according to ASME B1.1

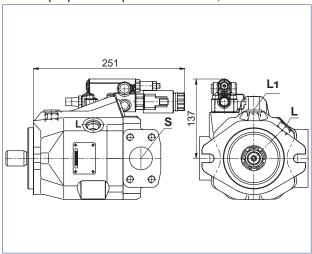


a certified installation drawing.


#### **DRG**

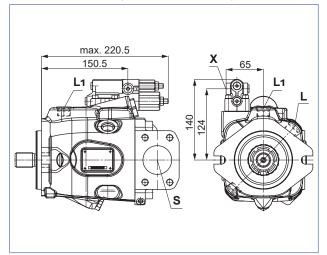
Pressure controller, remote controlled, series 52




### DFR / DFR1 / DRSC

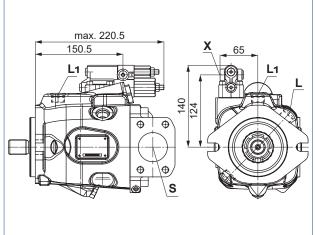
Pressure flow controller, series 52




### ED7. / ER7.

Electro-proportional pressure control, series 52



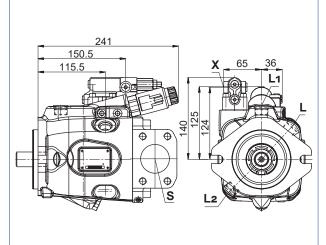

### **DRG**

Pressure controller, remote controlled, series 53



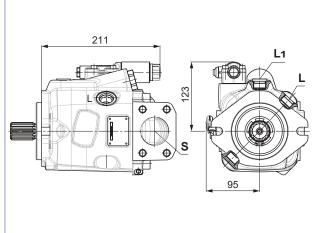
#### DRF / DRS / DRSC

Pressure flow controller, series 53



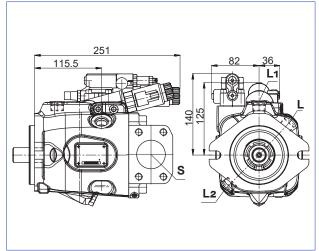



Before finalizing your design request a certified installation drawing. Dimensions in mm.


#### **EP.D. / EK.D.**

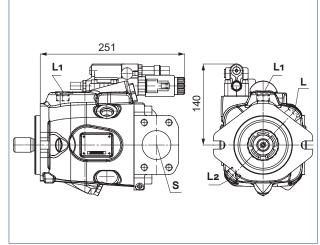
Electro proportional control, series 53




EC4

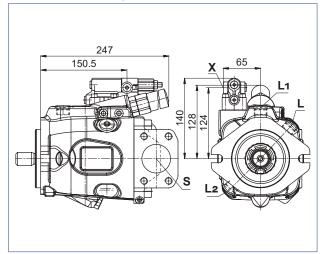
Electro-hydraulic control valve, series 53

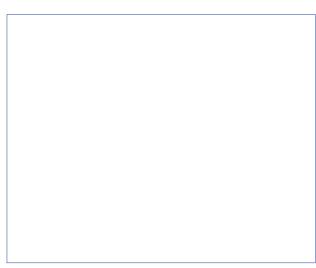



### EP.ED. / EK.ED.

Electro-prop. control, series 53

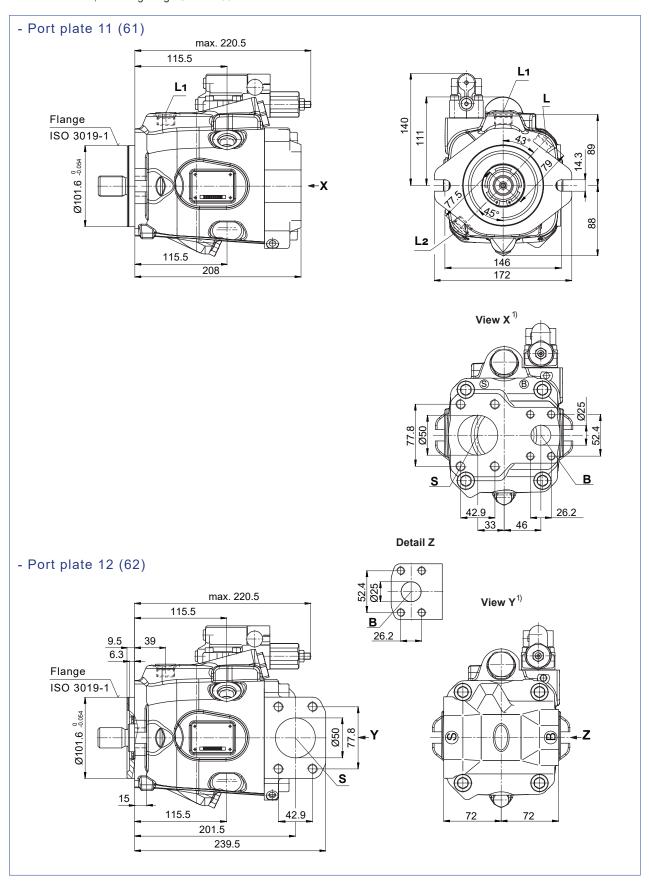



ED7. / ER7.


Electro-proportional pressure control, series 53



### LA.D.

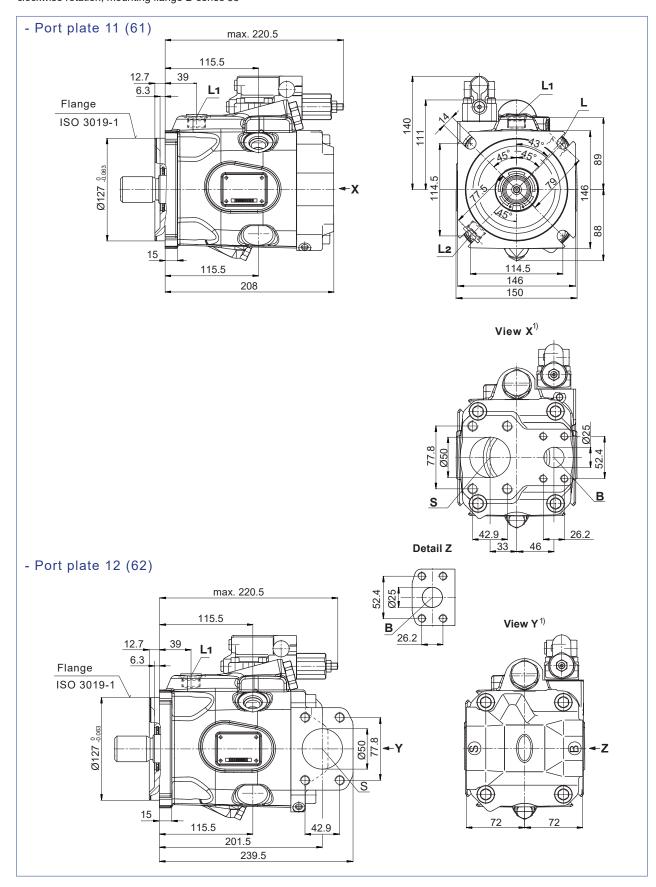

Pressure, flow and power controller, series 53







**DR** – Hydraulic pressure controller clockwise rotation, mounting flange C series 53 Before finalizing your design request a certified installation drawing. Dimensions in mm.




 $<sup>^{1)}\,</sup>$  Dimensions of working ports turned through 180° for counter-clockwise rotation.



**DR** – Hydraulic pressure controller clockwise rotation, mounting flange D series 53

Before finalizing your design request a certified installation drawing. Dimensions in mm.



<sup>1)</sup> Dimensions of working ports turned through 180° for counter-clockwise rotation.

Χ

### Dimensions, size 72

Pilot pressure



| Ports     |                                                                |                         |                                       |                                               |                     |
|-----------|----------------------------------------------------------------|-------------------------|---------------------------------------|-----------------------------------------------|---------------------|
| Port pla  | Port plate 11, 12                                              |                         | Size                                  | p <sub>max</sub><br>[psi (bar)] <sup>1)</sup> | State <sup>5)</sup> |
| В         | Working port<br>(standard pressure series)<br>Fastening thread | ISO 6162-1<br>DIN 13    | 1 in<br>M10 × 1.5; 17 (0.67) deep     | 4550 (315)                                    | 0                   |
| S         | Suction port<br>(standard pressure series)<br>Fastening thread | ISO 6162-1<br>DIN 13    | 2 in<br>M12 × 1.75; 20 (0.79) deep    | 75 (5)                                        | 0                   |
| Port pla  | te 61, 62                                                      | Standard                | Size                                  | p <sub>max</sub><br>[psi (bar)] <sup>1)</sup> | State <sup>5)</sup> |
| В         | Working port<br>(standard pressure series)<br>Fastening thread | ISO 6162-1<br>ASME B1.1 | 1 in<br>3/8-16UNC-2B; 18 (0.71) deep  | 4550 (315)                                    | 0                   |
| S         | Suction port<br>(standard pressure series)<br>Fastening thread | ISO 6162-1<br>ASME B1.1 | 2 in<br>1/2-13 UNC-2B; 22 (0.87) deep | 75 (5)                                        | 0                   |
| Other po  | orts                                                           | Standard                | Size                                  | p <sub>max</sub><br>[psi (bar)] <sup>1)</sup> | State <sup>5)</sup> |
| L         | Drain port                                                     | ISO 11926 <sup>2)</sup> | 7/8-14UNF-2B; 13 (0.51) deep          | 30 (2)                                        | O 3)                |
| L1 \ L2 4 | Drain port                                                     | ISO 11926 <sup>2)</sup> | 7/8-14UNF-2B; 13 (0.51) deep          | 30 (2)                                        | X 3)                |

ISO 11926

7/16-20UNF-2B; 11.5 (0.45) deep

4550 (315)

0

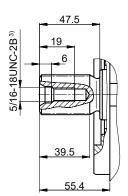
<sup>1)</sup> Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

 $<sup>^{2)}\,\,</sup>$  The countersink may be deeper than specified in the standard.

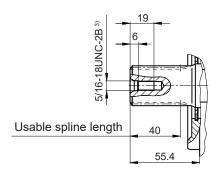
<sup>3)</sup> Depending on the installation position, L, L1 or L2 must be connected (also see installation instructions starting on page 80).

<sup>4)</sup> Only for series 53

<sup>5)</sup> O = Must be connected (plugged on delivery) X = Plugged (in normal operation)

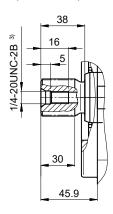



Dimensions [mm]


### Drive shaft

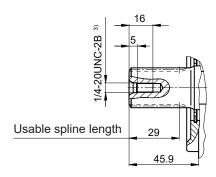
S

Splined shaft 1 1/4 in 14T 12/24DP<sup>1)</sup> (SAE J744)



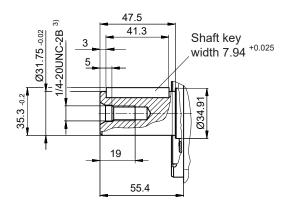

R Splined shaft 1 1/4 in 14T 12/24DP <sup>1)2)</sup> (SAE J744)




U

Splined shaft 1 in 15T 16/32DP<sup>1)</sup> (SAE J744)




w

Splined shaft 1 in 15T 16/32DP<sup>1)2)</sup> (SAE J744)



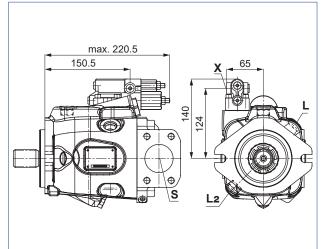
K

Parallel keyed shaft 32-1



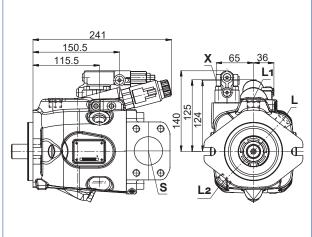
<sup>1)</sup> Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

<sup>&</sup>lt;sup>2)</sup> Splines according to ANSI B92.1a, spline runout is a deviation from standard ISO 3019-1.


<sup>3)</sup> Thread according to ASME B1.1

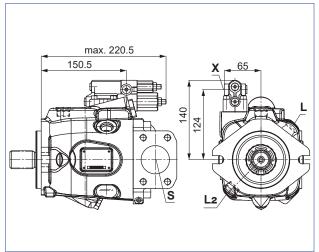


Before finalizing your design request a certified installation drawing. Dimensions in mm.


#### **DRG**

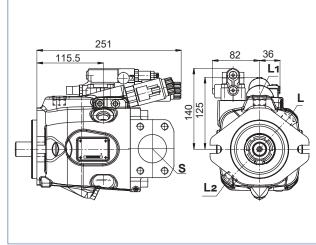
Pressure controller, remote controlled, series 53




### **EP.D. / EK.D.**

Electro proportional control, series 53




### DRF / DRS / DRSC

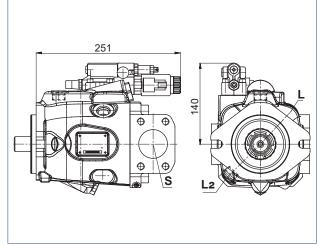
Pressure flow controller, series 53



EP.ED. / EK.ED.

Electro-prop. control, series 53




#### LA.D.

Pressure, flow and power controller, series 53



ED7. / ER7.

Electro-prop. pressure control, series 53

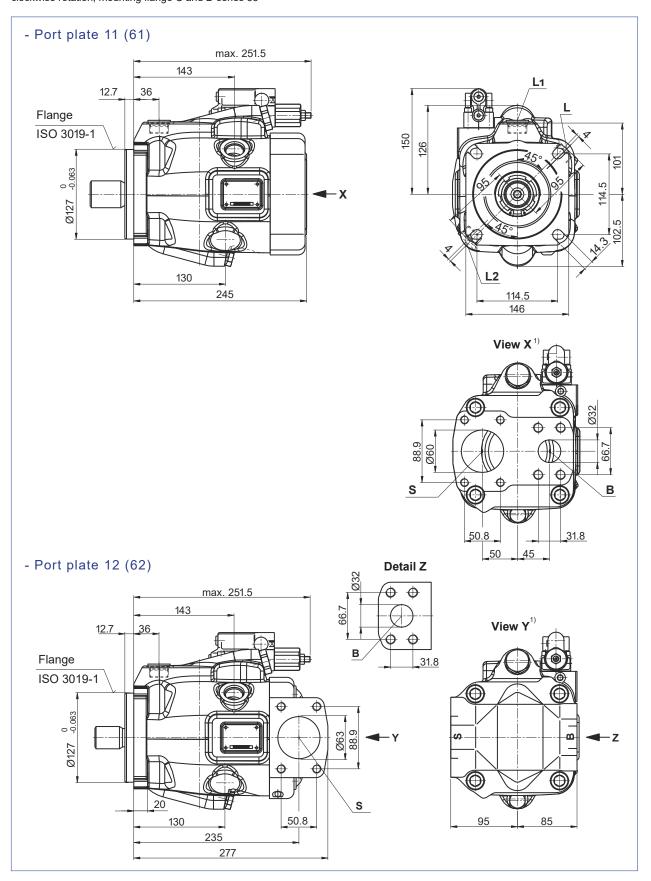


## Dimensions, size 85<sup>1)</sup>



**DR** – Hydraulic pressure controller clockwise rotation, mounting flange C series 52

Before finalizing your design request a certified installation drawing. Dimensions in mm.




Dimensions of working ports turned through 180° for counter-clockwise rotation.

### Dimensions, size 85<sup>1)</sup>



**DR** – Hydraulic pressure controller clockwise rotation, mounting flange C and D series 53 Before finalizing your design request a certified installation drawing. Dimensions in mm.



Dimensions of working ports turned through 180° for counter-clockwise rotation.



| Ports      |                                                                |                         |                                          |                                               |                     |
|------------|----------------------------------------------------------------|-------------------------|------------------------------------------|-----------------------------------------------|---------------------|
| Port plate | 11, 12                                                         | Standard                | Size                                     | p <sub>max</sub><br>[psi (bar)] <sup>1)</sup> | State <sup>5)</sup> |
| В          | Working port<br>(high-pressure series)<br>Fastening thread     | ISO 6162-2<br>DIN 13    | 1 1/4 in<br>M14 × 2; 19 (0.75) deep      | 4550 (315)                                    | 0                   |
| S          | Suction port<br>(standard pressure series)<br>Fastening thread | ISO 6162-1<br>DIN 13    | 2 1/2 in<br>M12 × 1.75; 17 (0.67) deep   | 75 (5)                                        | 0                   |
| Port plate | 61, 62                                                         | Standard                | Size                                     | p <sub>max</sub><br>[psi (bar)] <sup>1)</sup> | State <sup>5)</sup> |
| В          | Working port<br>(high-pressure series)<br>Fastening thread     | ISO 6162-2<br>ASME B1.1 | 1 1/4 in<br>1/2-13UNC-2B; 19 (0.75) deep | 4550 (315)                                    | 0                   |
| S          | Suction port<br>(standard pressure series)<br>Fastening thread | ISO 6162-1<br>ASME B1.1 | 2 1/2 in<br>1/2-13UNC-2B; 27 (1.06) deep | 75 (5)                                        | 0                   |
| Other por  | ts                                                             | Standard                | Size                                     | p <sub>max</sub><br>[psi (bar)] <sup>1)</sup> | State <sup>5)</sup> |
| L          | Drain port                                                     | ISO 11926 <sup>2)</sup> | 1 1/16-12UNF-2B; 15 (0.59) deep          | 30 (2)                                        | O 3)                |
| L1 \ L2 4) | Drain port                                                     | ISO 11926 <sup>2)</sup> | 1 1/16-12UNF-2B; 15 (0.59) deep          | 30 (2)                                        | X 3)                |
| X          | Pilot pressure                                                 | ISO 11926               | 7/16-20UNF-2B; 11.5 (0.45) deep          | 4550 (315)                                    | 0                   |
|            |                                                                |                         |                                          |                                               |                     |

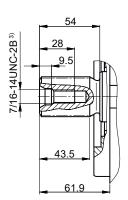
Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

 $<sup>^{2)}\,\,</sup>$  The countersink may be deeper than specified in the standard.

Depending on the installation position, L, L1 or L2 must be connected (also see installation instructions starting on page 80).

<sup>4)</sup> Only for series 53

<sup>5)</sup> O = Must be connected (plugged on delivery)X = Plugged (in normal operation)

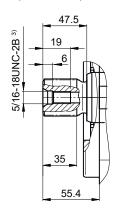



Dimensions [mm


#### Drive shaft

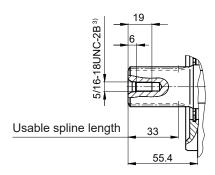
S

Splined shaft 1 1/2 in 17T 12/24DP<sup>1)</sup> (SAE J744)



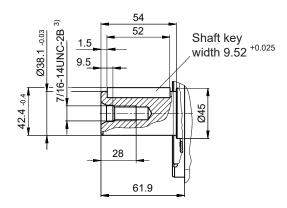

R Splined shaft 1 1/2 in 17T 12/24DP <sup>1)2)</sup> (SAE J744)




U

Splined shaft 1 1/4 in 14T 12/24DP 1) (SAE J744)




w

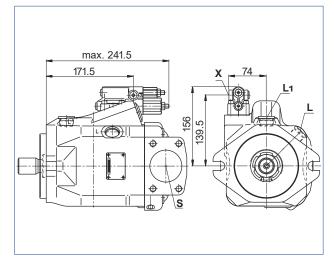
Splined shaft 1 1/4 in 14T 12/24DP<sup>1)2)</sup> (SAE J744)



K

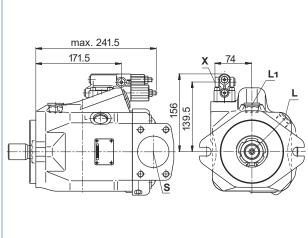
Parallel keyed shaft 38-1




- 1) Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- $^{2)}$  Splines according to ANSI B92.1a, spline runout is a deviation from standard ISO 3019-1.
- 3) Thread according to ASME B1.1

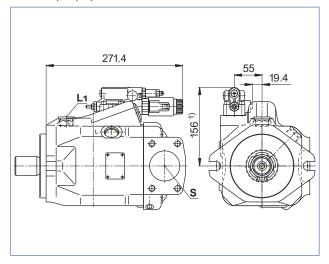


Before finalizing your design request a certified installation drawing. Dimensions in mm.

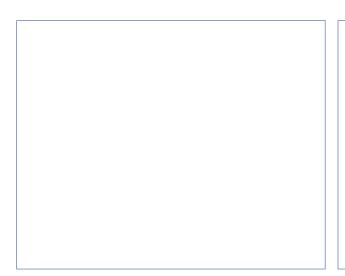

#### **DRG**

Pressure controller, remote controlled, series 52




#### DFR / DFR1 / DRSC

Pressure flow controller, series 52



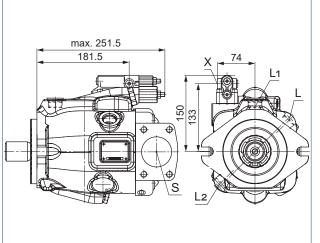

### ED7. / ER7.

Electro-prop. pressure control, series 52



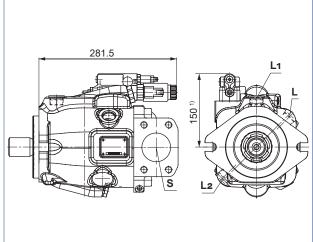






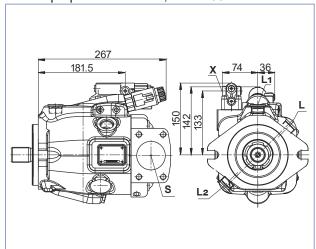

Before finalizing your design request a certified installation drawing. Dimensions in mm.

### Dimensions, size 85


#### **DRG**

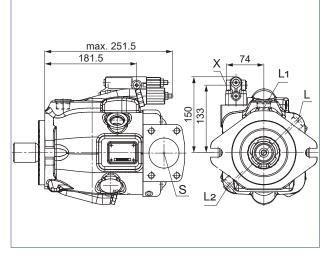
Pressure controller, remote controlled, series 53



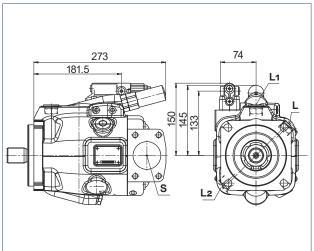

### ED7. / ER7.

Electro-prop. pressure control, series 53



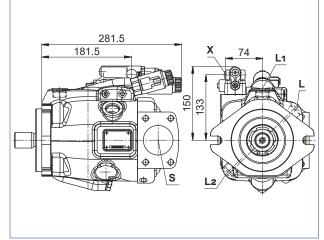

### **EP.D. / EK.D.**

Electro proportional control, series 53




#### DRF / DRS / DRSC

Pressure flow controller, series 53

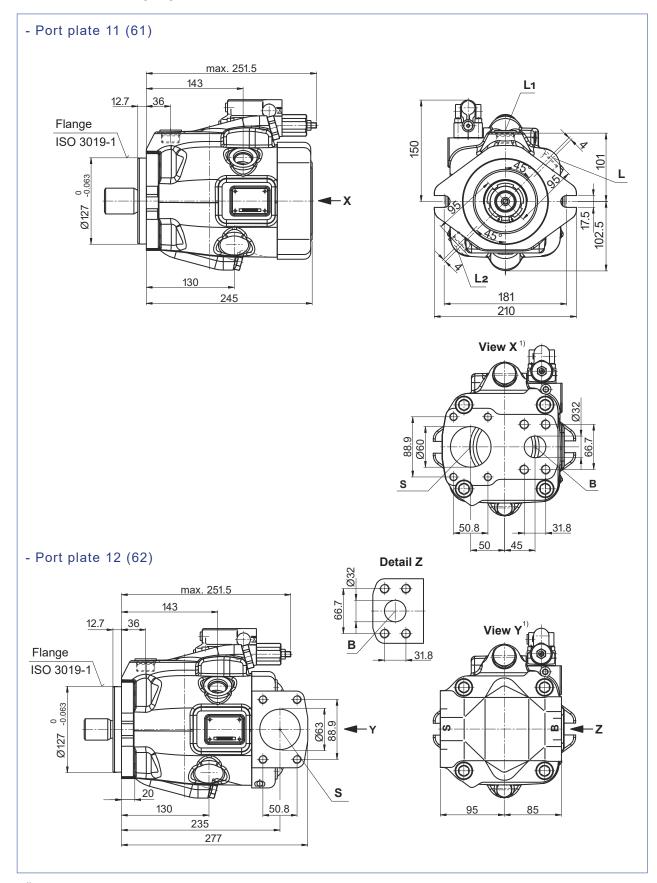



Pressure, flow and power controller, series 53



#### EP.ED. / EK.ED.

Electro-prop. control, series 53

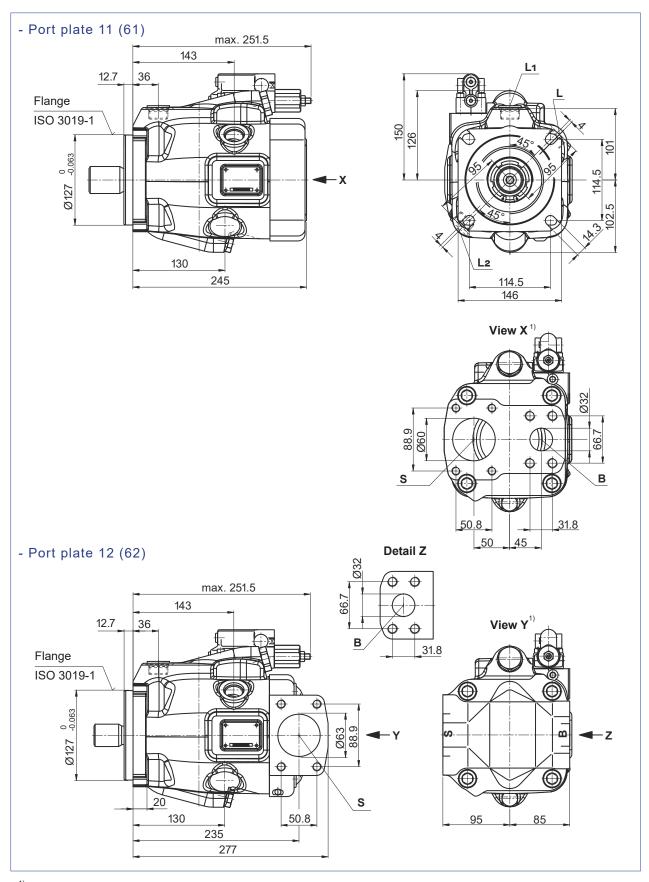



# Dimensions, size 100<sup>1)</sup>



**DR** – Hydraulic pressure controller clockwise rotation, mounting flange C series 53

Before finalizing your design request a certified installation drawing. Dimensions in mm.




Dimensions of working ports turned through 180° for counter-clockwise rotation.

### Dimensions, size 100<sup>1)</sup>



**DR** – Hydraulic pressure controller clockwise rotation, mounting flange D series 53 Before finalizing your design request a certified installation drawing. Dimensions in mm.



Dimensions of working ports turned through 180° for counter-clockwise rotation.



| Ports                                                      |                                                                |                         |                                          |                                               |                     |
|------------------------------------------------------------|----------------------------------------------------------------|-------------------------|------------------------------------------|-----------------------------------------------|---------------------|
| Port plate                                                 | 11, 12                                                         | Standard                | Size                                     | p <sub>max</sub><br>[psi (bar)] <sup>1)</sup> | State <sup>5)</sup> |
| В                                                          | Working port<br>(high-pressure series)<br>Fastening thread     | ISO 6162-2<br>DIN 13    | 1 1/4 in<br>M14 × 2; 19 (0.75) deep      | 4550 (315)                                    | 0                   |
| S                                                          | Suction port<br>(standard pressure series)<br>Fastening thread | ISO 6162-1<br>DIN 13    | 2 1/2 in<br>M12 × 1.75; 17 (0.67) dee    | 75 (5)                                        | 0                   |
| Port plate 61, 62                                          |                                                                | Standard                | Size                                     | p <sub>max</sub><br>[psi (bar)] <sup>1)</sup> | State <sup>5)</sup> |
| В                                                          | Working port<br>(high-pressure series)<br>Fastening thread     | ISO 6162-2<br>ASME B1.1 | 1 1/4 in<br>1/2-13UNC-2B; 19 (0.75) deep | 4550 (315)                                    | 0                   |
| S Suction port (standard pressure series) Fastening thread |                                                                | ISO 6162-1<br>ASME B1.1 | 2 1/2 in<br>1/2-13UNC-2B; 27 (1.06) deep | 75 (5)                                        | 0                   |
| Other ports                                                |                                                                | Standard                | Size                                     | p <sub>max</sub><br>[psi (bar)] <sup>1)</sup> | State <sup>5)</sup> |
| L                                                          | Drain port                                                     | ISO 11926 <sup>2)</sup> | 1 1/16-12UNF-2B; 15 (0.59) deep          | 30 (2)                                        | O 3)                |
| L1 \ L2 4)                                                 | Drain port                                                     | ISO 11926 <sup>2)</sup> | 1 1/16-12UNF-2B; 15 (0.59) deep          | 30 (2)                                        | X 3)                |
| X                                                          | Pilot pressure                                                 | ISO 11926               | 7/16-20UNF-2B; 11.5 (0.45) deep          | 4550 (315)                                    | 0                   |

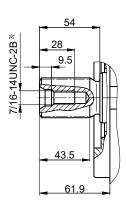
Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

 $<sup>^{2)}\,\,</sup>$  The countersink may be deeper than specified in the standard.

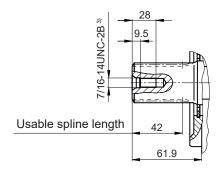
<sup>3)</sup> Depending on the installation position, L, L1 or L2 must be connected (also see installation instructions starting on page 80).

<sup>4)</sup> Only for series 53

<sup>5)</sup> O = Must be connected (plugged on delivery)X = Plugged (in normal operation)

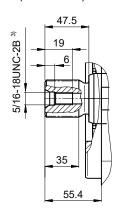



Dimensions [mm]


#### Drive shaft

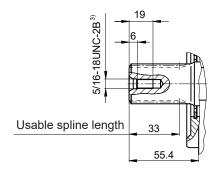
S

Splined shaft 1 1/2 in 17T 12/24DP¹) (SAE J744)



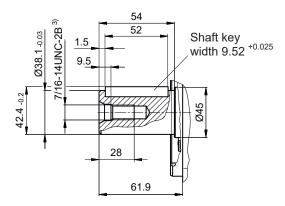

R Splined shaft 1 1/2 in 17T 12/24DP <sup>1)2)</sup> (SAE J744)




U

Splined shaft 1 1/4 in 14T 12/24DP 1) (SAE J744)




w

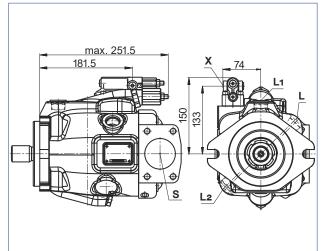
Splined shaft 1 1/4 in 14T 12/24DP 1) 2) (SAE J744)



K

Parallel keyed shaft 38-1




- 1) Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- $^{2)}$  Splines according to ANSI B92.1a, spline runout is a deviation from standard ISO 3019-1.
- 3) Thread according to ASME B1.1

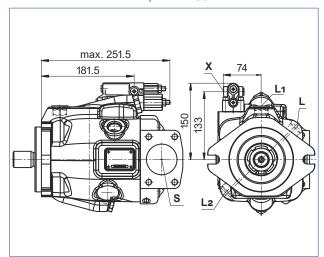


Before finalizing your design request a certified installation drawing. Dimensions in mm.

**DRG** 

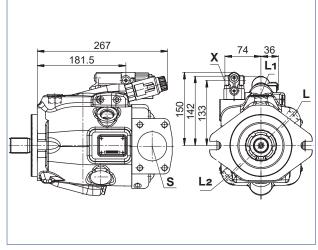
Pressure controller, remote controlled, series 53



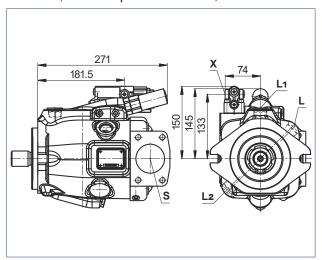

ED7. / ER7.

Electro-prop. pressure control, series 53



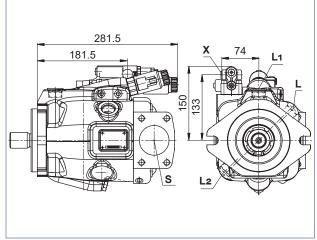

#### DRF / DRS / DRSC

Pressure flow controller, series 53




**EP.D. / EK.D.** 

Electro proportional control, series 53




Pressure, flow and power controller, series 53



#### EP.ED. / EK.ED.

Electro-prop. control, series 53



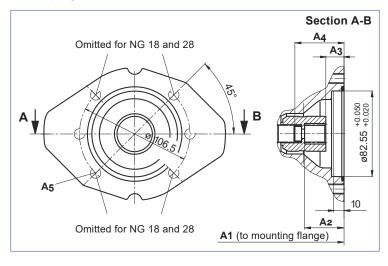
### Dimensions, through drive



Before finalizing your design request a certified installation drawing. Dimensions in mm.

K01 flange SAE J744 - 82-2 (A)

Coupling for splined shaft in accordance with ANSI B92.1a-1996

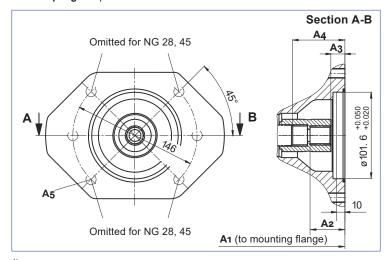



5/8 in 9T 16/32 DP 1) (SAE J744 - 16-4 (A))

| NG         | <b>A</b> 1 | A2   | А3   | A4 <sup>2)</sup>               |
|------------|------------|------|------|--------------------------------|
| 18         | 182        | 9.3  | 42.5 | M10 x 1.5,<br>0.57 (14.5) deep |
| 28         | 204        | 9.2  | 36.2 | M10 x 1.5,<br>0.63 (16) deep   |
| 45         | 229        | 10   | 52.7 | M10 x 1.5,<br>0.63 (16) deep   |
| 60 /<br>63 | 255        | 8.7  | 58.2 | M10 x 1.5,<br>0.63 (16) deep   |
| 72         | 255        | 8.7  | 58.2 | M10 x 1.5,<br>0.63 (16) deep   |
| 85         | 302        | 12.5 | 67.2 | M10 x 1.5,<br>0.79 (20) deep   |
| 100        | 302        | 12.5 | 67.2 | M10 x 1.5,<br>0.79 (20) deep   |

**K52 flange** SAE J744 - 82-2 (A)

Coupling for splined shaft in accordance with ANSI B92.1a-1996




3/4 in 11T 16/32 DP1) (SAE J744 - 19-4 (A-B))

| NG         | <b>A</b> 1 | A2   | А3   | <b>A</b> 4 | A5 <sup>2)</sup>               |
|------------|------------|------|------|------------|--------------------------------|
| 18         | 182        |      | 9.3  | 43.3       | M10 x 1.5,<br>0.57 (14.5) deep |
| 28         | 204        | 39.3 | 18.8 | 47         | M10 x 1.5,<br>0.63 (16) deep   |
| 45         | 229        | 39.4 | 18.9 | 53         | M10 x 1.5,<br>0.63 (16) deep   |
| 60 /<br>63 | 255        | 39.4 | 18.9 | 61         | M10 x 1.5,<br>0.63 (16) deep   |
| 72         | 255        | 38.8 | 18.4 | 000        | M10 x 1.5,<br>0.63 (16) deep   |
| 85         | 302        | 44.1 | 23.6 | 65         | M10 x 1.5,<br>0.79 (20) deep   |
| 100        | 302        | 44.1 | 23.6 | 65         | M10 x 1.5,<br>0.79 (20) deep   |
|            |            |      |      |            |                                |

**K68 flange** SAE J744 - 101-2 (B)

Coupling for splined shaft in accordance with ANSI B92.1a-1996

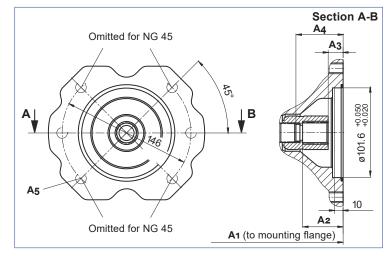


7/8 in 13T 16/32 DP<sup>1)</sup> (SAE J744 - 22-4 (B))

| NG   | <b>A</b> 1 | A2   | А3    | <b>A</b> 4 | A5 <sup>2)</sup>              |
|------|------------|------|-------|------------|-------------------------------|
| 28   | 204        | 42.3 | 17.8  | 47         | M12 × 1.75;                   |
|      |            |      |       |            | 0.71 (18) deep<br>M12 × 1.75: |
| 45   | 229        | 42.4 | 17.9  | 53         | 0.71 (18) deep                |
| 60 / | 255        | 42.4 | 17.9  | 59         | M12 × 1.75;                   |
| 63   |            |      |       |            | 0.71 (18) deep                |
| 72   | 255        | 41.8 | 17.4  | 000        | M12 × 1.75;                   |
|      |            |      |       |            | 0.71 (18) deep                |
| 85   | 302        | 46.5 | 22    | 69         | $M12 \times 1.75$ ;           |
|      | 302        | 10.0 |       |            | 0.79 (20) deep                |
| 100  | 202        | 46 E | 20    | 60         | M12 × 1.75;                   |
| 100  | 302 46.5   | 40.5 | 22 69 | 69         | 0.79 (20) deep                |

<sup>1) 30°</sup> pressure angle, flat base, flank centering, tolerance class 5

Thread according to DIN 13, observe the general instructions on FINAL PAGE must be observed.

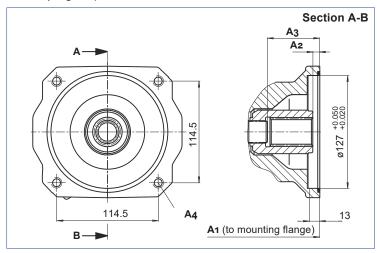

### Dimensions, through drive



Before finalizing your design request a certified installation drawing. Dimensions in mm.

**K04 flange** SAE J744 - 101-2 (B)

Coupling for splined shaft in accordance with ANSI B92.1a-1996

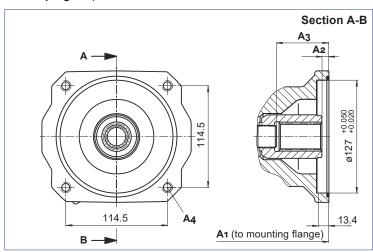



1 in 15T 16/32 DP 1) (SAE J744 - 25-4 (B-B))

| NG   | <b>A</b> 1 | A2            | А3   | <b>A</b> 4 | A5 <sup>2)</sup>    |
|------|------------|---------------|------|------------|---------------------|
| 45   | 229        | 47.9          | 18.9 | 53.4       | M12 × 1.75;         |
|      |            |               |      |            | 0.71 (18) deep      |
| 60 / | 255        | 47 4          | 18.9 | 58.9       | $M12 \times 1.75$ ; |
| 63   | 200        | 255 47.4 10.3 | 10.5 | 30.9       | 0.71 (18) deep      |
| 72   | 255 46     | 46.8          | 17 9 | 000        | $M12 \times 1.75$ ; |
| 12   | 233        | 40.0          | 17.9 | 000        | 0.71 (18) deep      |
| 85   | 302        | 51.2          | 22.2 | 69         | M12 × 1.75;         |
| 00   | 302        | 31.2          | 22.2 | 09         | 0.79 (20) deep      |
| 400  | 200        | <b>54.0</b>   | 00.0 | 00         | M12 × 1.75;         |
| 100  | 302        | 51.2          | 22.2 | 69         | 0.79 (20) deep      |

**K15 flange** SAE J744 - 127-4 (C)

Coupling for splined shaft in accordance with ANSI B92.1a-1996




1 1/4 in 14T 12/24 DP 1) (SAE J744 - 32-4 (C))

| NG         | <b>A</b> 1 | A2   | А3   | A4 <sup>2)</sup>              |
|------------|------------|------|------|-------------------------------|
| 60 /<br>63 | 255        | 17.9 | 55.9 | M12 x 1.75,<br>0.63 (16) deep |
| 72         | 255        | 17.9 | 55.9 | M12 x 1.75,<br>0.63 (16) deep |
| 85         | 301.5      | 22   | 60   | M12 x 1.75,<br>through        |
| 100        | 301.5      | 22   | 60   | M12 x 1.75,<br>through        |
|            |            |      |      |                               |

K16 flange SAE J744 - 127-4 (C)

Coupling for splined shaft in accordance with ANSI B92.1a-1996

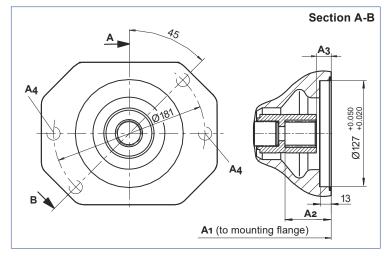


1 1/2 in 17T 12/24 DP<sup>1)</sup> (SAE J744 - 32-4 (C))

| NG  | <b>A</b> 1 | <b>A2</b> | А3   | A4 <sup>2)</sup>       |
|-----|------------|-----------|------|------------------------|
| 85  | 301.5      | 13        | 67.9 | M12 × 1.75;<br>through |
| 100 | 301.5      | 13        | 67.9 | M12 × 1.75;<br>through |
|     |            |           |      |                        |

 $<sup>30^\</sup>circ$  pressure angle, flat base, flank centering, tolerance class 5

Thread according to DIN 13, observe the general instructions on FINAL PAGE must be observed.

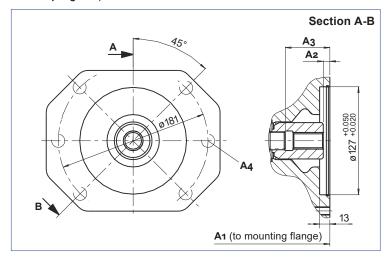

### Dimensions, through drive



Before finalizing your design request a certified installation drawing. Dimensions in mm.

K07 flange SAE J744 - 127-2 (C

Coupling for splined shaft in accordance with ANSI B92.1a-1996




1 1/4 in 14T 12/24 DP<sup>1)</sup> (SAE J744 - 32-4 (C))

| NG  | <b>A</b> 1 | <b>A2</b> | <b>A</b> 3 | A4 <sup>2)</sup>         |
|-----|------------|-----------|------------|--------------------------|
| 85  | 301.5      | 60        | 22         | M16×2;<br>24 (0.94) deep |
| 100 | 301.5      | 60        | 22         | M16×2;<br>24 (0.94) deep |

**K24 flange** SAE J744 - 127-2 (C)

Coupling for splined shaft in accordance with ANSI B92.1a-1996



1 1/2 in 17T 12/24 DP<sup>1)</sup> (SAE J744 - 38-4 (C-C))

| NG  | <b>A</b> 1 | <b>A2</b> | А3   | <b>A4</b> <sup>2)</sup>    |
|-----|------------|-----------|------|----------------------------|
| 85  | 302        | 12.8      | 67.2 | M16 x 2,<br>0.94 (24) deep |
| 100 | 302        | 12.8      | 67.2 | M16 x 2,<br>0.94 (24) deep |

<sup>30°</sup> pressure angle, flat base, flank centering, tolerance class 5

 $<sup>^{2)}</sup>$  Thread according to DIN 13, observe the general instructions on FINAL PAGE must be observed.

### **Overview of mounting options**



| Through d | rive                  |             | Mounting options – 2nd                      | pump                     |                          | Through                      |
|-----------|-----------------------|-------------|---------------------------------------------|--------------------------|--------------------------|------------------------------|
| Flange    | Hub for splined shaft | Code        | PA10V(S)O/5x<br>NG (shaft)                  | PA10VO/31<br>NG (shaft)  | Gear pump<br>design (NG) | drive<br>available for<br>NG |
| 82-2 (A)  | 5/8 in                | K01         | 10 (U)                                      | 18 (U)                   | F (5 to 22)              | 18 to 100                    |
|           | 3/4 in                | K52         | 10 (S)<br>18 (U)<br>18 (S ` R)              | 18 (S · R)               | -                        | 18 to 100                    |
| 101-2 (B) | 7/8 in                | K68         | 28 (S · R)<br>45 (U · W) <sup>1)</sup>      | 28 (S · R)<br>45 (U · W) | N/G (26 to 49)           | 28 to 100                    |
|           | 1 in                  | <b>K</b> 04 | 45 (S · R)<br>60 · 63 (U · W) <sup>2)</sup> | 45 (S · R)<br>-          | -                        | 45 to 100                    |
| 127-4 (C) | 1 1/4 in              | K15         | 60 · 63 (S · R)                             | -                        | -                        | 63 to 100                    |
|           | 1 1/2 in              | K16         | 85 (S)<br>100 (S)                           | -                        | -                        | 85 to 100                    |
| 127-2 (C) | 1 1/4 in              | K07         | 85 (U · W)<br>100 (U · W)                   | 71 (S · R)               | -                        | 85 to 100                    |
|           | 1 1/2 in              | K24         | 85 (S)<br>100 (S)                           |                          |                          | 85 to 100                    |

<sup>1)</sup> Not for NG28 with K68.

<sup>2)</sup> Not for NG28 with K04.

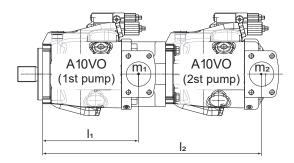
### **Combination pumps A10VO + A10VO**



Before finalizing your design request a certified installation drawing.

When using combination pumps it is possible to have multiple, mutually independent circuits without the need for a splitter gearbox. When ordering combination pumps the model codes for the first and the second pump must be joined by a "+".

### Order example


PA10VO85DRS/53R-VSC12K04+ PA10VO45DRF/53R-VSC11N00

The tandem pump comprising two identical sizes is permissible without additional supports taking into account a maximum dynamic mass acceleration of 10g ( =  $98.1 \text{ m/s}^2$ ).

For combination pumps comprising more than two pumps, the mounting flange must be calculated for the permissible moment of inertia.

### Permissible moment of inertia

| NG                                         |    |    | 10 | 18   | 28  | 45  | 60/63 | 85   | 100  |
|--------------------------------------------|----|----|----|------|-----|-----|-------|------|------|
| Permissible moment of inertia              |    |    |    |      |     |     |       |      |      |
| static                                     | Tm | Nm | _  | _    | 890 | 900 | 1370  | 3080 | 3080 |
| dynamic at 10 <i>g</i> ( 98.1 m/s² )       | Tm | Nm | -  | _    | 89  | 90  | 137   | 308  | 308  |
| Mass with through-drive plate              | m  | kg | -  | -    | 17  | 24  | 28    | 45   | 45   |
| Mass without through drive (e.g. 2nd pump) | m  | kg | 8  | 11.5 | 14  | 18  | 22    | 34   | 34   |
| Distance center of gravity                 | I  | mm | -  | 82   | 81  | 95  | 100   | 122  | 122  |



| m₁ ՝ m₂ ՝ m₃           | Mass of pumps                                           | [kg] |
|------------------------|---------------------------------------------------------|------|
| 1                      | Distance center of gravity                              | [mm] |
| Tm = ( $m_1 \cdot l_1$ | $+ m_2 \cdot l_2 + m_3 \cdot l_3 ) \cdot \frac{1}{102}$ | [Nm] |

### Installation instructions



#### General

The axial piston unit must be filled with hydraulic fluid and air bled during commissioning and operation. This must also be observed following a longer standstill as the axial piston unit empty via the hydraulic lines.

Especially with the installation position "drive shaft upwards" or "drive shaft downward", attention must be paid to a complete filling and air bleeding since there is a risk, for example, of dry running.

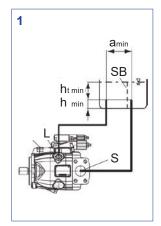
The case drain fluid in the case interior must be directed to the reservoir via the highest case drain port (L1, L2, L3).

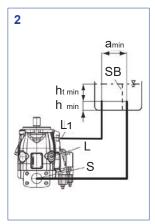
For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the minimum permissible case pressure of all connected units is not exceeded in any situation. If this is not possible, separate drain lines must be laid if necessary.

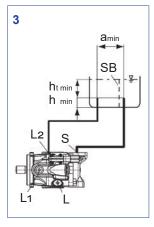
To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

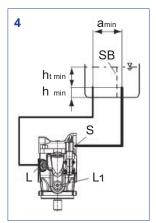
In all operating conditions, the suction line and case drain line must flow into the reservoir below the minimum fluid level. The permissible suction height hs is a result of the overall pressure loss, but may not be greater than hs  $_{\text{max}}$  = 31.50 in (800 mm). The minimum suction pressure at port S must also not fall below 12 psi (0.8 bar) absolute during operation.

#### Installation position


See the following examples 1 to 12.


Additional installation positions are available upon request.


Recommended installation positions: 1 and 3.


#### Below-reservoir installation (standard)

Below-reservoir installation means the axial piston unit is ins-talled outside of the reservoir below the minimum fluid level.









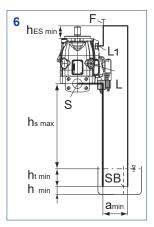
| Installation position | Air bleed      | Filling          |
|-----------------------|----------------|------------------|
| 1                     | L              | S+L              |
| 2                     | L <sub>1</sub> | S+L1             |
| 31)                   | L2             | S+L <sub>2</sub> |
| 4                     | L              | S+L              |

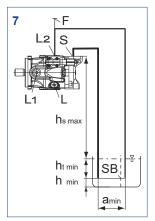
Only series 53

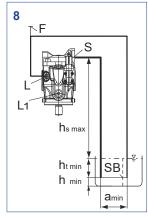
### **Installation instructions**



### Above-reservoir installation


Above-reservoir installation means the axial piston unit is installed above the minimum fluid level of the reservoir.


To prevent the axial piston unit from draining, a height difference hes min of at least in 25 mm is required in installati-on position 6.


Observe the maximum permissible suction height  $h_{s max} = 31.50 in (800 mm).$ 

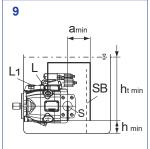
A check valve in the case drain line is only permissible in individual cases. Consult us for approval.

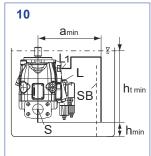


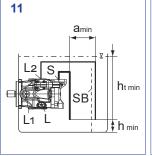


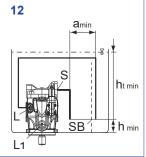





| Installation position | Air bleed | Filling    |
|-----------------------|-----------|------------|
| 5                     | F         | L \ L1 (F) |
| 6                     | F         | L1 (F)     |
| 71)                   | F         | S+L2 (F)   |
| 8                     | F         | S+L (F)    |


<sup>1)</sup> Only series 53


### Inside-reservoir installation


Inside-reservoir installation means the pump is installed within the minimum reservoir fluid level.

Axial piston units with electrical components (e.g. electric control, sensors) may not be installed in a reservoir below the fluid level.









| Installation position | Air bleed      | Filling |
|-----------------------|----------------|---------|
| 9                     | L1             | L \ L1  |
| 10                    | L <sub>1</sub> | L \ L1  |
| 11 <sup>1)</sup>      | L2             | S       |
| 12                    | L              | S+L     |

| S                | Suction port                                                                                      |
|------------------|---------------------------------------------------------------------------------------------------|
| F                | Filling / air bleeding                                                                            |
| L×L1             | Case drain port                                                                                   |
| SB               | Baffle (baffle plate)                                                                             |
| ht min           | Minimum necessary immersion depth (7.87 in (200 mm))                                              |
| h <sub>min</sub> | Minimum necessary spacing to reservoir base (3.94 in (100 mm))                                    |
| hes min          | Minimum necessary height needed to protect the axial piston unit from draining (0.98 in (25 mm)). |
| hs max           | Maximum permissible suction height (21.50 in (800 mm))                                            |
| <b>a</b> min     | When designing the reservoir, ensure adequate                                                     |

distance between the suction line and the case

drain line. This prevents the heated, return flow from being drawn directly back into the suction

### Installation instructions



- The PA 10VO pump is designed to be used in open circuit.
- · Project planning, installation and commissing of the axial piston unit require the involvement qualifed personnel.
- Before operating the axial piston unit, please the appropriate instruction manual thoughly and completely.
   If necessary, request these from YEOSHE.
- Duning and shortly after operation, there is a risk of burns on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e.g. by wearing protective clothing).
- Depending on the operating conditions of the axial piston unit (operating pressure, fluid temperature characteristeristics myyc shift.

#### Service line ports

- The ports and fixing threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fiuidii temperature) with the necessary safety factors.
- · The service line ports and function ports are only designed to accommodate hydraulic lines.
- Pressure cut-off and pressure control do not provide security against pressure overload.
   A separate pressure relief valve is to be provided in the hydraulic system.
- The data and notes contained herein must be adhered to.
- The product is not approved as a component for the safety concept of a general machine according to DIN EN ISO 13849.

### The following tightening torques apply

#### **Fittings**

Observe the manufacturer's instruction regarding the tightening torques of the used fittings.

### Fixing screws

For fxing screws with metric ISO thread according to DIN thread according to ASME B1.1, we recommend thecking the tightening torque individually according to VDI 2230.

#### Female threads in axial piston unit

- The maximum permissible tightening torques M6 may are maximum values for the female threads and must not be excedededed.
- · For values, see the following table.

#### Threaded plugs

For the metal threaded plugs supplied with the axial piston unit, the required tightening torques of threaded plugs Mv apply. For values, see the following table.

| Ports<br>Standard | Thread size     | Maximum permissible tightening torque for female threads Mg max | Required tightening 固<br>torque forthreaded<br>plugs M.Mv | 力短ze of hexagon socket of threaded plugs |
|-------------------|-----------------|-----------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------|
| ISO 11926         | 7/16-20UNF-2B   | 40 Nm                                                           | 18 Nm                                                     | 3/16 in                                  |
|                   | 9/16-18UNF-2B   | 80 Nm                                                           | 35 Nm                                                     | 1/4 in                                   |
|                   | 3/4-16UNF-2B    | 160 Nm                                                          | 70 Nm                                                     | 5/16 in                                  |
|                   | 7/8-14UNF-2B    | 240 Nm                                                          | 110 Nm                                                    | 3/8 in                                   |
|                   | 1 1/16-12UNF-2B | 360 Nm                                                          | 170 Nm                                                    | 9/16 in                                  |

#### YEOSHE HYDRAULICS CO.,LTD

No.68 Wukong 1set Rd, Wufong Dist 413, Taichung Taiwan

Tel: +886-4-23332339 Fax: +886-4-23333817
E-mail: yeoshe@ms36.hinet.net Website: www.yeoshe.com.tw

#### Dongguan branch

Cell phone: +86-10600266957 Tel: +86-769-85962158

E-mail: CNA523@yeoshe.com.cn Webs

Fax: +86-769-81635359 Website: www.yeoshe.com.cn

# YEOSHE BEST CHOICE Efficient Performance

# Innovative Technology Reliable Quality and Service





### 油聖液壓科技有限公司

YEOSHE HYDRAULICS TECHNOLOGY CO.,LTD.

413 台灣台中市霧峰區霧工一路68號

No.68, Wugong 1st Rd., Wufong Dist., Taichung City, Taiwan, 413 TEL +886-4-23332339 FAX +886-4-23333817 E-mail yeoshe@yeoshe.com.tw

東莞辦事處 Dongguan **CP** +86-13600266957 (Miss Zhong)

E-mail yeoshe@yeoshe.com.tw

上海辦事處 Shanghai CP +86-15021931394 (Mr. Wu) CP +86-18939716986 (Mr. Chen)

經銷商 Distributor



www.yeoshehydraulic.com

版權所有 翻印必究 Copyright @2025 by YEOSHE